摘要:微博作为一种实时的信息传播和分享的社交网络平台,对人们日常生活的影响越来越大.在微博中,用户可以通过关注关系,添加自己感兴趣的好友,扩大自己的交际圈.但如何推荐高质量的关注好友,一直是个性化服务的难点之一.针对此种情况,提出一种微博好友推荐算法,旨在为用户推荐高质量的关注用户.该算法是对基于Seeker-Source矩阵分解模型的一种改进算法.文中分析了微博用户的多种数据源信息,并给出了相应的特征提出方法,最后将这些特征引入到Seeker-Source矩阵分解模型中,通过对模型的优化求解,得到最佳的参数因子矩阵,从而完成好友推荐.在真实的微博数据集上的实验表明,本文所提出的算法取得了良好的效果.