基于改进权重增量Apriori算法的产品推荐方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Products Recommendation Based on Improved Weight Increment Apriori Analysis
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    采用权重增量挖掘思想优化算法,为用户推荐个性化产品配置提供了有效的解决方案.方法主要主要分为3个部分,首先利用平台搭建起来的用户跟踪模块对用户行为进行跟踪和数据的收集;然后结合用户最近的行为习惯,使用基于权重增量的Apriori算法进行关联规则挖掘;最后根据挖掘出的结果完成产品推荐的过程.通过对挖掘算法的优化,大大提高了系统的运行效率和准确性,产品推荐随着用户行为的改变而改变,更加符合实际情况.实验结果表明,该算法可以有效解决产品推荐问题,相比于传统关联规则挖掘算法,准确率提高了4%.

    Abstract:

    In this paper, the weight of the incremental mining thinking optimization algorithm, for users to recommend personalized product configuration provides an effective solution. The method is mainly divided into three parts, first using the platform to build up user tracking module for tracking user behavior and collecting data; then combined with the user's behavior recently, the use of association rules mining based on the weight increment Apriori algorithm; final complete the product according to the recommended procedure to dig out results. By mining algorithm optimization, greatly improving the efficiency and accuracy of the product is recommended with the change in user behavior and changes in the system, more in line with the actual situation. Experimental results show that the algorithm can effectively solve the problem of product recommendation, compared to the traditional association rule mining algorithm, the accuracy is improved by 4%.

    参考文献
    相似文献
    引证文献
引用本文

王昕妍,王晓峰.基于改进权重增量Apriori算法的产品推荐方法.计算机系统应用,2015,24(11):199-203

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-03-13
  • 最后修改日期:2015-04-29
  • 录用日期:
  • 在线发布日期: 2015-12-03
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号