改进的BP神经网络算法在水质监测中的应用
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Application of an Improved BP Neural Network Algorithm in Water Quality Monitoring
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对一类多输入多输出系统进行辨识, 以"A simulation of the western basin of Lake Erie"为例, 通过分析河流湖泊的水质特征, 针对伊利湖湖泊水质建立数学模型, 由于该环境系统为多输入多输出系统, 文章采用了一种改进的BP神经网络算法, 利用Matlab神经网络工具箱进行数据分析, 绘出实际输出与模型输出的曲线以分析相关情况, 检验建立的模型对于系统的辨识水平, 给出传统BP网络和改进BP网络对该系统辨识的结果进行分析对比. 文章还对不同噪声层次下的数据进行分析比较, 并研究白噪声对于人工神经网络模型的影响.

    Abstract:

    This paper proposes an identification for a class of MIMO system. Taking "A simulation of the western basin of Lake Erie" as an example, quality characteristics of water system is analyzed and mathematical models of Lake Erie is made in this paper. An optimized BP ANN model is used for this MIMO system and the MATLAB's NNT is used to carry on data processing. The effectiveness of system identification is inspected by the curves between models' output and actual results. The comparison between traditional and optimized BP ANN is given at the end of this paper. In this paper data collected under different noises is compared to study on the effect of white noises on ANN.

    参考文献
    相似文献
    引证文献
引用本文

李福,郭健.改进的BP神经网络算法在水质监测中的应用.计算机系统应用,2015,24(10):243-247

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-01-22
  • 最后修改日期:2015-03-12
  • 录用日期:
  • 在线发布日期: 2015-10-17
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号