融合内外特征的性别分类
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

山西省软科学研究计划(2014041049-1);山西省大同市政府专项研究项目(2014001)


Gender Classification Using Fusion of Facial Features and Hair Features
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对以往仅用人脸特征或头发特征来进行性别分类的片面性, 提出了将两类特征相融合的性别分类方法. 用对光照、尺度变化具有很强鲁棒性的Gabor小波变换提取人脸内部特征并用PCA方法降维. 利用最小代价原理, 将动态搜索技术用于图像空间取得头发区域, 定义了头发长度、头发表面积两种外部特征, 并提出了相应的特征提取方法. 采用模糊神经网络对三种特征进行非线性融合. 在Essex人脸库中进行了性别分类实验, 取得了97.1%的准确率.

    Abstract:

    Aiming at the One-sidedness of face features or hair features to identify gender in the past, a novel method based on fusion of these features for gender classification was proposed. Face internal features were extracted by Gabor wavelet transform which are robust to the illumination change and scale variations, and feature dimensions were reduced by the method of PCA. Hair region was obtained by the method of dynamic searching in the area of face image. Two kinds of external features of hair length and hair surface area were defined and puted forward the method of corresponding feature extraction. To achieve nonlinear fusion of the three types of features with fuzzy neural network(FNN), the gender classification was completed in the Essex face database and a correct identification rate of 97.1% was obtained.

    参考文献
    相似文献
    引证文献
引用本文

张景安,张天刚.融合内外特征的性别分类.计算机系统应用,2015,24(6):8-13

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-10-04
  • 最后修改日期:2014-11-28
  • 录用日期:
  • 在线发布日期: 2015-06-09
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号