基于偏好的二分图网络模型Top-N推荐
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61300104)


Top-N Recommendation Based on Preference Bipartite Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对推断网络(NBI)的二分图方法中只是考虑用户是否评价过项目, 却没有利用用户评分高低这一局限性, 提出基于偏好的推断网络(PNBI)推荐方法. 该方法在推断网络的基础上, 考虑单个用户对项目评分高低体现了该用户对项目的喜好程度, 在"用户-项目"的资源分配过程中, 将资源分配给评分值较大的评分项, 该方法能克服NBI算法中无法使用低评分值数据的缺陷. 考虑到数据的稀疏性问题, 采用倒排表的方法来节省相似度的运算次数, 加速算法. 在MovieLens数据集上的实验表明, PNBI二分图推荐算法在准确率、覆盖率和召回率三个方面均优于NBI二分图推荐算法.

    Abstract:

    In view of the bipartite graph method of network-based inference (NBI) only considered whether users evaluated the project or not, but not given their scores, the thesis proposed a preferential network-based inference (PNBI) recommended method. Based on inference network, the method takes into account that user's rating values for the program reflects his degree of preference. In the "User-Item" resource allocation process, the method allocates resources to the item that gets a higher score, this method can overcome the NBI algorithm's disadvantage of failing to use low score value. Considering the sparsity of data, the method uses inverted list to discrese the number of calculation to accelerate the algorithm. Experiments on MovieLens dataset show that, PNBI bipartite graph recommended algorithm outperforms NBI bipartite graph recommended algorithm in accuracy, coverage and recall.

    参考文献
    相似文献
    引证文献
引用本文

陈添辉,林世平,郭昆,廖寿福.基于偏好的二分图网络模型Top-N推荐.计算机系统应用,2015,24(4):196-200

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-08-12
  • 最后修改日期:2014-09-16
  • 录用日期:
  • 在线发布日期: 2015-04-24
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号