Elman神经网络及其在河口水质评价中的应用
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

高等学校博士学科点专项科研基金博导类资助课题(20126118110015)


Elman Neural Network and its Application in Estuarine Water Quality Assessment
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    应用Elman神经网络对河口水质进行评价, 确定其水质级别及污染程度. 根据汾河入黄口的实际污染情况及因子选择的目的原则, 确定评价因子, 构建基于Elman神经网络的河口水质评价模型. 应用训练好的Elman神经网络河口水质评价模型对河津大桥监测断面2010年各月水质进行评价, 分析研究汾河入黄口处的水质污染状况, 结果表明, 汾河入黄口河津大桥监测断面2010年各月综合水质均为劣Ⅴ类水, 因此, 汾河入黄口污染治理迫在眉睫, 应从源头加强汾河污染物入河量的控制. 水质识别实例表明Elman河口水质评价模型避免了传统神经网络无法实时改变模型结构和缺乏对未来突变情况适应性的缺点, 使得训练好的网络具有非线性和动态特性, 水质评价结果切合实际, 具有很好的实用性.

    Abstract:

    Elman neural network was applied to evaluate estuarine water quality, and then the water quality and pollution levels were determined. According to the actual pollution of Fen River's estuary to Yellow River and the objective principle of factor selection, the evaluation factors were determined, and the estuarine water quality evaluation model which was based on Elman neural network was established. The trained model was used to evaluate the water quality of Hejin bridge monitoring section each month in 2010and analyse the water pollution condition of Fen River's estuary to Yellow River. Results indicated that the comprehensive water quality of Hejin bridge monitoring section at Fen River's estuary to Yellow River each month in 2010were inferior Ⅴ. Therefore, the pollution control of Fen River's estuary to Yellow River is imminent, source control of pollutants into Fen River should be strengthened. The example of water quality identify shows that the model can avoid the shortcomings of traditional neural network model, such as traditional neural network model cannot change the structure of the model in real time and it lacks of adaptability to future mutations, and make the trained network with nonlinear and dynamic characteristics. The water quality evaluation results of this model are realistic. So, the model has a good usability.

    参考文献
    相似文献
    引证文献
引用本文

范翠香,张园园,薛鹏松. Elman神经网络及其在河口水质评价中的应用.计算机系统应用,2015,24(3):251-255

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-06-30
  • 最后修改日期:2014-08-20
  • 录用日期:
  • 在线发布日期: 2015-03-04
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号