信道失配环境下鲁棒说话人识别
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Robust Speaker Recognition Under Channel Mismatch Environment
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目前说话人识别系统在理想环境下识别率已可达90%以上, 但在实际通信环境下识别率却迅速下降.本文对信道失配环境下的鲁棒说话人识别进行研究. 首先建立了一个基于高斯混合模型(GMM)的说话人识别系统,然后通过对实际通信信道的测试和分析, 提出了两种改进方法. 一是由实测数据建立了一个通用信道模型, 将干净语音经通用信道模型滤波后再作为训练语音训练说话人模型; 二是通过对比实测信道﹑理想低通信道及语音梅尔倒谱系数(MFCC)的特点, 提出合理舍去语音第一﹑二维特征参数的方法. 实验结果表明, 通过处理后, 系统在通信环境下的识别率提升了20%左右, 与传统的倒谱均值减(CMS)方法相比,识别率提高了9%-12%.

    Abstract:

    The recognition rate of the Speaker Recognition System under ideal condition can reach more than 90%, but the recognition rate will decrease rapidly under the traffic environment. In this paper, we discuss the robust speaker recognition under the channel mismatch environment. First, a speaker recognition system based on Gaussian mixture model(GMM) is set up. Then, two methods of improvement are put forward through testing and analysis of the actual communication channel. One is that we establish a general channel model to filter the clean speech which is regarded as the training speech. The other is that we put forward to abandon the first and second dimensional characteristic parameters through comparing the Mel-frequency cepstral coefficient of the measured channel, the ideal low-pass channel and the common speech. The experimental results show that the recognition rate under the channel mismatch environment is improved by 20% after processing and 9%-12% comparing with the traditional Cepstral Mean Subtraction(CMS).

    参考文献
    相似文献
    引证文献
引用本文

冉国敬,夏秀渝,张凤仪.信道失配环境下鲁棒说话人识别.计算机系统应用,2015,24(3):235-240

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-06-24
  • 最后修改日期:2014-07-18
  • 录用日期:
  • 在线发布日期: 2015-03-04
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号