智能医疗系统中GA_SVM特征选择和参数优化
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Ga-Svm Based Feature Selection and Parameters Optimization in Intelligent Medical Systems
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    挂号是医疗过程最基本的单元, 通常患者不知道自己病情, 挂错科室的情况十分普遍, 智能医疗系统的挂号功能很好地解决了这一难题, 智能医疗系统利用医疗部门积累的海量病案文本进行训练和机器学习, 对患者的病例特征进行分析将其分类到正确的病种, 得出应挂的科室然后推荐给患者. 而影响传统的支持向量机(SVM)文本分类的效率和准确率主要是特征值的提取和核函数参数的优化问题, 由此提出了一种遗传算法(GA)和SVM相结合的文本分类方法, 即把文本特征值和核函数的参数看作遗传算法中的一个染色体(一个个体), 并进行二进制编码, 对每一个个体进行选择、交叉、变异的遗传操作, 得到最优的个体, 最后通过支持向量机利用最优特征和最优参数进行文本分类. 实验表明, 该模型提高了患者智能诊断挂号的正确率, 是一种较好的智能推荐诊断挂号算法.

    Abstract:

    Medical registration is the most basic unit of the medical profession. Generally patients don't understand the condition of their illness. So choosing the wrong department is completely common. Intelligent medical system solves this problem very well. Intelligent medical system makes use of the massive medical record texts which the medical department accumulates to train and carry on machine learning, and to analyze the characteristics of the registration patient's medical record and to classify to the right disease. The patient is recommended to the appropriate department according to getting the department to be registered. The influence on the efficiency and accuracy of the traditional support vector machine (SVM) text classification of the intelligent medical system is the feature extraction and kernel function parameters optimization. Therefore, the method of the Genetic Algorithm (GA) combining with SVM is proposed. The text feature values and kernel function parameters together is viewed as a chromosome of the genetic algorithm that is an individual to carry on the binary encoding. The optimal individual is obtained by the genetic manipulation of the selection, crossover and mutation. Finally, text classification is operated by support vector machine using the optimal features and optimal parameters. The test result shows that this model improves the accuracy of intelligent diagnosis and is a good intelligent diagnosis registration algorithm.

    参考文献
    相似文献
    引证文献
引用本文

徐旭东,王群,孔令韬.智能医疗系统中GA_SVM特征选择和参数优化.计算机系统应用,2015,24(3):226-230

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-07-08
  • 最后修改日期:2014-08-25
  • 录用日期:
  • 在线发布日期: 2015-03-04
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号