支持向量机算法在MOOC 课程答疑系统中的研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

中央高校基本科研基金(A092050205130425)


Study on MOOC Intelligent Answering Using Support Vector Machine
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着互联网技术和近期MOOC 课程的发展,智能答疑系统也受到了更多的关注,应用它能够及时给学生提供学生疑惑的问题答案. 智能答疑系统通常包括问句理解、信息检索、答案抽取和选择三个主要部分,且问句分类是问句理解的关键,因为它的准确性将直接影响到最后答案的准确性. 以高校计算机基础课程为实际背景,在已有基于支持向量机算法基础上,对该方法进行了改进,并通过训练集和测试集进行了验证. 从实验结果看,该方法在高校计算机基础智能答疑系统中有比较好的应用效果.

    Abstract:

    With the development of Internet technology and the MOOC Courses, the intelligent answering also has drown more attention, because it can solve user unsure questions timely. Intelligent answering system typically includes comprehension questions, information retrieval and answer extraction and selection. Question classification is a part of comprehension questions, which directly affects the accuracy of the final answers. It is verified by the training and test sets using the improving method which is based on support vector machine. The results show this method get high classification accuracy on intelligent answering.

    参考文献
    相似文献
    引证文献
引用本文

岳群琴,景红.支持向量机算法在MOOC 课程答疑系统中的研究.计算机系统应用,2014,23(9):173-176

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2013-12-24
  • 最后修改日期:2014-02-21
  • 录用日期:
  • 在线发布日期: 2014-09-18
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号