基于高斯核的SVM的参数选择
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家科技重大专项(2012ZX10004-301-609);国家自然科学基金(61272472,61232018,61202404);安徽省教学研究计划2010


Parameter Selection of SVM with Gaussian kernel
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于高斯核的支持向量机应用很广泛,高斯核参数σ的选择对分类器性能影响很大,本文提出了从核函数性质和几何距离角度来选择参数σ,并且利用高斯函数的麦克劳林展开解决了参数σ的优化选择问题. 实验结果表明,该方法能较快地确定核函数参数σ,且SVM分类效果较好,解决了高斯核参数σ在实际应用中不易确定的问题.

    Abstract:

    Support vector machine based on Gaussian kernel has been used in many areas. The parameter σ of the Gaussian kernel has great impact on the performance of the classifier. This paper proposes an approach to choose an optimal parameter σ based on the properties of the kernel function and the angle of geometric distance. What is more, we have solved the problem of the optimal option of the parameter σ by means of the McLaughlin expansion of the Gaussian kernel function. The experiment results indicate that this method can get parameter σ very quickly and can achieve high efficiency. Thus the difficulty of the estimation of the parameter σ can be solved by our method.

    参考文献
    相似文献
    引证文献
引用本文

王行甫,陈家伟.基于高斯核的SVM的参数选择.计算机系统应用,2014,23(7):242-245

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2013-11-16
  • 最后修改日期:2013-12-12
  • 录用日期:
  • 在线发布日期: 2014-08-15
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号