基于像素采样的分形图像编码算法
作者:

Fractal Image Encoding Based on Pixel Sampling
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [17]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    分形图像编码是一种基于自然图像局部自相似性的有效压缩算法技术. 但是,基本的分形编码算法是耗时的,由于在基本编码算法中值域块要在庞大的定义域块库中搜索最佳的匹配块. 为了减少编码时间,该文提出了基于像素采样的分形编码方案. 该方案既不需要复杂的理论分析,也不需要改变现有的分形编码、解码过程,因此能够以直接的方式引进其他的块速的编码算法. 计算机仿真显示,在PSNR降低的情况下,编码的匹配搜索时间大幅度减少,同时解码图像的主观质量并没有很大程度上明显降低.

    Abstract:

    Fractal image coding is an novel and an developed potential image compression technique based on the local self-similarities within real world images. However, the baseline fractal image coding is time consuming due to the best matching search between range blocks and numerous domain blocks. In order to reduce encoding times, the paper proposed an improved scheme for fractal image coding based on pixel sampling. The improved scheme not only does not need any complex theoretical analysis, but also does not need to change the existing fractal decoding procedure; thus it can bring in other fast fractal image encoding algorithms in a straightforward manner. Computer simulations on a set of standard images show that match searching time can be reduced substantially and the subject image quality remain unchanged basically, while the PSNR being decreased slightly.

    参考文献
    1 唐国维,顾国昌.基于单窗口扫描的并行EBCOT编码.哈尔滨工业大学学报,2008,40(12):2078-2081.
    2 Barnsley MF, Sloan AD. A better way to compress images. Bytemagazine, 1988, 13(1): 215-223.
    3 Jacquin AE. A novel fractal block coding technique for digital image. Proc. of ICASSP IEEE International conference on ASSP. 1990. 2225-2228.
    4 Jeng JH, Truong TK, Sheu JR. Fast fractal image compression using the Hadamard transform. IEE Proc. Vision, Image and Signal Processing, 2000, 147(6): 571-574.
    5 Fisher Y. Fractal Image Compression-Theory and Application. NewYork. Springer- Verlag. 1994. 338-346.
    6 Rowshanbi N, Samavi S, Shirani. Acceleration of fractal image compression using characteristic vector classification. Electrical and Computer Engineering. CCECE'06. Canadian Conference on. IEEE. 2006. 2057-2060.
    7 Li J, Fu P, Liu JG. Fractal image coding based on classification and clustering. Journal of Computer-Aided Design & Computer Graphics, 2002, 14(4): 348-350.
    8 Lee CK, Lee WK. Fast fractal image block coding based on local variances. IEEE Trans. Image Processing, 1998, 7(6): 888-891.
    9 Lai CM, Lam KM, Siu WC. Improved searching scheme for fractal image coding. Electronics Letters, 2002, 38(25): 1653-1654.
    10 He C, Yang SX, Huang X. Variance-based accelerating scheme for fractal image encoding. Electronics Letters, 2004, 40(2): 115-116.
    11 He C, Yang SX, Xu X. Fast fractal image compression based on one-norm of normalized block. Electronics Letters, 2004, 40(17): 1052-1053.
    12 Truong TK, Kung CM, Jeng JH, Hsieh ML.Fast fractal image compression using spatial correlation. Chaos, Solitons and Fractals, 2004, 22: 1071-1076.
    13 Tong CS, Pi M. Fast fractal image encoding based on adaptive search. IEEE Trans. Image Processing, 2001, 10(9): 1269-1277.
    14 Tong CS, Wong M. Adaptive approximate nearest neighbor searchfor fractal image compression. IEEE Trans. Image Processing, 2002,11(6): 605-615.
    15 Mohamed FK, Aoued B. Speeding up fractal image compression by genetic algorithms. Multidimensional Systems and Signal Processing, 2005, 16: 217-236.
    16 Li J, Yuan D, Xie Q, Zhang C. Fractal image compression by ant colony algorithm. Proc. of the 9th International conference for young computer scientists, IEEE, 2008:1890-1894.
    17 Eberhart RC, Shi YH. Particle swarm optimization: Developments, applications and resources. Proc. IEEE Int. Congr. Evolutionary Computation. Seoul, Korea. 2001.1.81-86.
    相似文献
    引证文献
引用本文

苏兆宝,周敏,郑红婵,李晓珺.基于像素采样的分形图像编码算法.计算机系统应用,2013,22(12):136-139,167

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2013-05-18
  • 最后修改日期:2013-06-21
  • 在线发布日期: 2013-12-12
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号