基于蚁群聚类算法的优化与改进
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(71231003);福建省自然科学基金(2012J01262)


Optimization and Improvement Based on Ant Colony Clustering Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    传统的蚁群聚类算法将聚类数据的每一维属性都等同看待,而在实际的应用中各维属性对聚类的贡献率不一,具有主次之分,若将所有属性赋予相同的权重,将对聚类的效果造成影响. 为了克服这个缺陷,本文将主成份分析(PCA)方法引入到蚁群聚类当中,利用PCA计算属性的贡献率并以此构建属性的权重. 在此基础上,结合一个新的初始化策略,提出了一种属性带权的改进蚁群聚类算法. 通过对多个UCI数据集的测试,验证了本算法的有效性. 实验结果表明,合理的权重分配能够有效的提高蚁群聚类的质量.

    Abstract:

    The traditional ant colony clustering algorithm treats all features of data set equally. But in practice, the contribution rate of attributes is different from each other. Therefore, giving all features the same weight will eventually affect the quality of clustering. To overcome the defect, the method of principal components analysis is introduced into the ant colony clustering algorithm to calculate the contribution rates of attributes and to construct the weights of attributes. On this basis, combined with a new initialization strategy, an improved ant colony algorithm with weighted attributes is proposed in this paper. The experiments on several UCI data sets validated the effectiveness of the proposed algorithm. The results show that reasonable weight distribution can effectively improve the quality of clustering.

    参考文献
    相似文献
    引证文献
引用本文

林金灼,叶东毅.基于蚁群聚类算法的优化与改进.计算机系统应用,2013,22(12):93-99

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2013-05-05
  • 最后修改日期:2013-05-29
  • 录用日期:
  • 在线发布日期: 2013-12-12
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号