基于Hadoop平台协同过滤推荐算法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Hadoop-Based Collaborative Filtering Recommendation Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对协同过滤推荐算法在数据稀疏性及在大数据规模下系统可扩展性的两个问题, 在分析研究Hadoop分布式平台与协同过滤推荐算法后, 提出了一种基于Hadoop平台实现协同过滤推荐算法的优化方案. 实验证明, 在Hadoop平台上通过MapReduce结合Hbase数据库实现算法, 能够有效地提高协同过滤推荐算法在大数据规模下的执行效率, 从而能够进一步地搭建低成本高性能、动态扩展的分布式推荐引擎.

    Abstract:

    In order to solve data sparsity and scalability of the Collaborative Filtering (CF) recommendation algorithm when the volume of the dataset is very large. After deeply analyzing the Hadoop distributed computing platform and the characteristic of Collaborative Filtering recommendation algorithm, the paper propose a optimization scheme on Hadoop platform. The experimental results show that it can effectively improve the execution efficiency of Collaborative Filtering recommendation algorithm in large data size, when it is realized by MapReduce with Hbase database on the Hadoop platform.And then, it contribute to build one recommendation system which is low cost, high-performance and dynamic scalability.

    参考文献
    相似文献
    引证文献
引用本文

杨志文,刘波.基于Hadoop平台协同过滤推荐算法.计算机系统应用,2013,22(7):108-112

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2012-12-16
  • 最后修改日期:2013-01-14
  • 录用日期:
  • 在线发布日期: 2013-07-25
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号