基于web 的股评观点挖掘系统
作者:
基金项目:

国家自然科学基金(61170112);北京市教委科技创新平台建设项目(PXM2011_014213_113631)


An Opinion Mining System of Stock Recommendations Based on Web
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [17]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    互联网已经逐渐成为散户投资者获得投资信息的主要渠道. “大盘走势”是散户投资股市主要考虑的因素.这里基于股评文章的特征设计实现了股评观点挖掘系统. 该系统利用基于模式的倾向性分析股评的方法, 识别并提取预测性观点句并通过倾向性分析最终获得股评的分类. 实验表明, 基于该方法的观点挖掘系统, 查准率达到了91.7%.

    Abstract:

    Internet has become the main channel of information on investment for individual investors. “market trend” is a major consideration for individual investors to investment market. Here to try to design the opinion mining system of stock, the system uses model-based method of tendentious analysis of stock analysts, to identify and extract the predictable view of statement classification and tendentious analysis of the final stock analysts. The experiment results show that the use of the approach makes the opinion mining system’s precision rate arrive at 91.7%.

    参考文献
    1 姚天昉,等.一个用于汉语汽车评论的意见挖掘系统.中文信 息处理前沿进展—中国中文信息学会二十五周年学术会 议论文集.北京:清华大学出版社,2006,260-281.
    2 Dave K, Lawrence S, Pennock DM. Mining the Peanut Gallery: Opinion Extraction and Semantic Classification of Product Reviews. Proc. of the 12th International World Wide Web Conference(WWW2003). Budapest, Hungary, 2003.
    3 Yi J, Niblack W. Sentiment Mining in WebFountain. Proc. of the ICDE205, the 21st International Conference on Data Engineering. IEEE Computer Society. Tokyo, Japan, 2005.
    4 Wilson T, Hoffmann P, Somasundaran S, Patwardhan et al. Opinion Finder: A system for subjectivity analysis. Demonstration Description in Conference on Empirical Methods in Natural Language Processing. Vancouver, 2005.
    5 Liu B, et al. Opinion observer: analyzing and comparing opinions on the web. Proc. of WWW’OS, the14th International Conference on WWW. Chiba, Japan, 2005. 342- 351.
    6 Jin W, Ho H, Srihari R. OpinionMiner: a novel machine learning system for web opinion mining and extraction. Proc. of KDD. 2009. 1195-1204.
    7 胡航丽,莫倩.利用篇章结构改进股评观点分类的研究.小型 微型计算机系统,2009,30(5):899-902.
    8 刘晓,莫倩,张政.网络评论观点分类研究.北京工商大学学 报(自然科学版),2008,25(3):61-65.
    9 莫倩,张渝杰,胡航丽,等.一种混合的股评观点倾向性分析 方法.计算机工程与应用,2011,47(19):222-225.
    10 Prabowo R, Thelwal M. Sentiment Analysis: A Combined Approach. Journal of Informetrics, April 2009,3(2):143 -157.
    11 胡航丽,莫倩.基于Web 的股评观点倾向性分析研究[硕士 学位论文].北京:北京工商大学,2010.
    12 Liu X, Mo Q, Zhang Z. Research on opinion classification of internet reviews. Journal of Beijing Technology and Bussiness University (Natural Science Edition), 2008, 26(3):61-65.
    13 Tumey PD. Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews. Association for Computational Linguistics 40th Anniversary Meeting(ACL), Philadelphia, 2002. 417-424.
    14 Schapire RE, Singer Y. BoosTexter: A boosting-based system for text categorization. Machine Learning, 2000,39(2/3):135-168.
    15 Jiang L, Yu M, Zhou M, Liu X, Zhao T. Target-dependent twitter sentiment classification. ACL. 2011.
    16 Liu B. Web Data Mining-Exploring Hyperlinks, Contents, and Usage Data (2nd ed.). Berlin Heidelberg: Springer,2008.
    17 Akkaya Cem, Conrad A, Wiebe J, Mihalcea R. Amazon Mechanical Turk for subjectivity word sense disambigua-码 tion. Proc. of the NAACL HLT 2010 Workshop on Creating Speech and Language Data with Amazon’s Mechanical Turk. Los Angeles, CA. 2010. 195-203.
    相似文献
    引证文献
引用本文

莫倩,姜越,胡航丽.基于web 的股评观点挖掘系统.计算机系统应用,2012,21(12):38-42,51

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2012-04-13
  • 最后修改日期:2012-05-12
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号