基于Graph Cut与区域生长的连续CT图像分割算法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

广州开发区科技计划(2010Q-P200);广州市科技计划(2010Y1-C611)


CT Image Sequence Segmentation Algorithm Based on Graph Cut and Region Growth
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    Graph Cut方法用于医学图像分割具有精度高, 分割准确等优点, 但处理每一幅图片都需要用户选定对象和背景, 耗时较长. 区域生长方法适于对面积不大的区域进行分割, 分割速度快, 但需要人工选取种子点, 且在对比度低的情况下分割效果不理想. 针对医学CT连续断层图像间相关性强特点, 提出一种把Graph Cut方法和区域生长方法相结合的图像分割算法GCRGIS. 首先使用Graph Cut法对连续断层图像的首幅图像进行分割, 以分割出的图像轮廓作为后幅断层图像待生长区域的边缘, 将边缘进行腐蚀后再进行区域生长, 分割出目标图像. 实验结果表明, 该方法处理连续CT图像时仅需对首幅图像进行人工交互, 在后续图像的分割中避免了每幅图像都要人工交互的繁琐, 分割效果好, 速度快.

    Abstract:

    Graph Cut algorithm applies to medical image segmentation has the excellence of high precision and high accuracy. But object and background seeds must be selected by intervention in all image. Region growth is good at segmenting small region object, but seeds must be selected first and the result is not accurate when low contrast. According to the strong relativity between medical CT image sequence, GCRGIS algorithm is proposed for the segmentation of medical image. Take the contour of the first image as the edge of the second image and then segmented by region growth after erode the edge. The result shows that this algorithm is high speed and high quality. It just needs to deal with the first image by intervention and to deal with next image automatic.

    参考文献
    相似文献
    引证文献
引用本文

宋子国,战荫伟.基于Graph Cut与区域生长的连续CT图像分割算法.计算机系统应用,2012,21(9):206-209

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2012-01-05
  • 最后修改日期:2012-02-27
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号