一种求解Job Shop 调度问题的改进遗传算法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

江苏省科技攻关项目(BE2010070)


Improved Genetic Algorithm for Job Shop Scheduling Problems
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    传统遗传算法在求解Job Shop 调度问题时存在收敛速度慢,易于早熟的缺点。在病毒遗传算法(VEGA)和灾变遗传算法的基础上提出了一种带有灾变因子的病毒遗传算法(IVEGA-C)。该算法在传统遗传算法的基本结构上加入了病毒感染操作和灾变操作,病毒感染操作实现了同代个体之间横向传递进化信息,灾变操作采用灭绝操作。正是这种改进加快了遗传算法的收敛速度,避免了早熟现象和陷入局部最优解。通过仿真实验验证了IVEGA-C 算法在解决Job Shop 调度问题中的性能优于传统GA 算法和VEGA 算法。最后给出了应

    Abstract:

    Traditional Genetic Algorithm for solving Job Shop Scheduling Problems has some shortcomings such as slow convergence and easy to bring immature convergence. On the basis of Virus Evolutionary Genetic Algorithm (VEGA) and Genetic Algorithm with Catastrophe factor, an improved Virus Evolutionary Genetic Algorithm with Catastrophe factor (IVEGA-C) was proposed. IVEGA-C adds virus infection operation and catastrophe operation to the basic structure of traditional Genetic Algorithm. Virus infection operation passes the evolutionary information between the populations in the same generation and an improved extinction operation was used as the strategy of catastrophe. The improved algorithm speeded up the convergence rate of the Genetic algorithm, avoided the premature phenomena and to fall into local optimal scheduling solution. The simulation results verify that IVEGA-C on solving the Job Shop Scheduling Problems is better than traditional Genetic Algorithm and VEGA. At last we give an example of using this algorithm to solve scheduling problems in our real-world.

    参考文献
    相似文献
    引证文献
引用本文

沈镇静,郑湃,李家霁.一种求解Job Shop 调度问题的改进遗传算法.计算机系统应用,2012,21(8):57-62

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2011-11-18
  • 最后修改日期:2012-03-30
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号