LBP 直方图与PCA 的欧式距离的人脸识别
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Face Recognition of LBP Histogram PCA and Euclidean Distance
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于LBP 算子具有旋转不变性和灰度不变性等显著特点,本文通过LBP 算子的特征提取,将人脸分成子区域,然后通过连接这些子区域的LBP 直方图生成人脸特征向量,由于生成的特征向量的维数过高,通过PCA算法降维压缩,最后用欧式距离分类器完成测试样本和训练样本的人脸识别,通过实验比较得出很好的人脸识别效果,此人脸识别算法过程用于火车站等各种公共场合有很好的应用效果。

    Abstract:

    LBP operator has notable features of rotation invariance and gray-scale invariance etc. This paper uses LBP operator to get feature extraction, the face image is divided into sub-regions, then connecting these sub-regions LBP histogram to generate facial feature vector, because too many dimension of facial feature vector, using PCA to reduce dimension and compression. The final step is using Euclidean distance classifier to complete face recognition. Through the experimental conclusion shows very good face recognition effect. The face recognition algorithm used for various kinds of public, like the railway station have good application effect.

    参考文献
    相似文献
    引证文献
引用本文

黄金钰,张会林,闫日亮. LBP 直方图与PCA 的欧式距离的人脸识别.计算机系统应用,2012,21(6):202-204,198

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2011-09-12
  • 最后修改日期:2011-10-22
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号