一种随机粒子群算法及应用
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

黑龙江省教育厅科学技术研究项目(11551015)


Random Particle Swarm Optimization Algorithm and Its Application
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提高粒子群算法的优化效率,在分析量子粒子群优化算法的基础上,提出了一种随机粒子群优化算法。该算法只有一个控制参数,搜索步长由一个随机变量的取值动态决定,通过合理设计控制参数的取值,实现对目标位置的跟踪。标准测试函数极值优化和聚类优化的实验结果表明,与量子粒子群和普通粒子群算法相比,该算法在优化能力和优化效率两方面都有改进。

    Abstract:

    To improve the efficiency of particle swarm optimization, a random particle swarm optimization algorithm is proposed on the basis of analyzing the search process of quantum particle swarm optimization lgorithm. The proposed algorithm has only a parameter, and its search step length is controlled by a random variable value. In this model, the target position can be accurately tracked by the reasonable design of the control parameter. The experimental results of standard test function extreme optimization and clustering optimization show that the proposed algorithm is superior to the quantum particle swarm optimization and the common particle swarm optimization algorithm in optimization ability and optimization efficiency.

    参考文献
    相似文献
    引证文献
引用本文

李盼池,王海英,杨雨.一种随机粒子群算法及应用.计算机系统应用,2012,21(2):245-248,217

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2011-06-11
  • 最后修改日期:2011-07-11
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号