基于子空间集成的概念漂移数据流分类算法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

福建省高校产学合作重大项目资助(2010H6007);教育部留学回国人员基金(教外司留[2008]890 号)


Classification Algorithm for Concept-Drifting Data Stream Based on Subspace Integration
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    具有概念漂移的复杂结构数据流分类问题已成为数据挖掘领域研究的热点之一。提出了一种新颖的子空间分类算法,并采用层次结构将其构成集成分类器用于解决带概念漂移的数据流的分类问题。在将数据流划分为数据块后,在每个数据块上利用子空间分类算法建立若干个底层分类器,然后由这几个底层分类器组成集成分类模型的基分类器。同时,引入数理统计中的参数估计方法检测概念漂移,动态调整模型。实验结果表明:该子空间集成算法不但能够提高分类模型对复杂类别结构数据流的分类精度,而且还能够快速适应概念漂移的情况。

    Abstract:

    The classification of concept-drifting data streams with complex category structures has recently becomes one of the most popular topics in data mining. This paper proposes a novel subspace classification method, and uses it to form an ensemble classifier in a hierarchical structure for concept-drifting data streams classification. After dividing a given data stream into several data blocks, it uses the subspace classification method to train some bottom classifiers on each data block, and then uses these bottom classifiers to form a base classifier. The base classifers are used to build the ensemble classifier. Meanwhile, it introduces the parameter estimation method to detect concept drift. Experimental results show that the proposed method does not only significantly improve the classification performance on datasets with complex category structures, but also quickly adapts to the situation of concept drift.

    参考文献
    相似文献
    引证文献
引用本文

李南,郭躬德.基于子空间集成的概念漂移数据流分类算法.计算机系统应用,2011,20(12):240-248

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2011-04-19
  • 最后修改日期:2011-05-29
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号