一种F-scores 和SVM 结合的客户分类方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


A Method Combined of Support Vector Machine and F-scores for Customer Classification
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了克服现有客户分类方法在假设前提、准确度、泛化能力等方面的不足,提出了一种F-scores 和SVM算法相结合的客户分类方法,并把该方法应用到银行信用卡客户分类问题中予以验证。实证分析表明:该方法最终的模型验证准确率可达95%以上,学习和分类能力良好。

    Abstract:

    A method combined of F-scores and support vector machine for customer classification was proposed, which can overcome the shortages of the existing customer classification method such as strict hypothesis, poor generalization ability, low prediction accuracy and low learning rate etc., and was applied to the problem of bank credit card customer classification. Empirical results show the validation accuracies of the final model can achieve 95% or more, which concludes that learning and generalization abilities of this model are excellent.

    参考文献
    相似文献
    引证文献
引用本文

段刚龙,黄志文,王建仁.一种F-scores 和SVM 结合的客户分类方法.计算机系统应用,2011,20(1):197-200

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2010-05-11
  • 最后修改日期:2010-06-11
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号