自适应种群的高斯动态粒子群聚类算法①
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(60873100);山西省高校科技研究开发项目(20081023)


Adaptive Population of Gaussian Dynamic PSO Clustering Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    聚类问题究其根本在于样本之间相似性的定义和聚类效果优劣的评价。粒子群聚类算法以其较好的聚类效果而受到广大研究者的关注。提出了一种新的衡量聚类效果的函数,并对其进行一定的分析。另外,从分析粒子群算法的拓扑结构出发,在高斯动态粒子群算法的基础上,提出了一种自适应种群的高斯动态粒子群聚类算法。实验表明,该衡量函数能够有效地评价聚类效果的优劣,其算法具有良好的聚类效果,在高维数据上表现优良。

    Abstract:

    The key issue in Clustering is the definition of similarity between samples and the evaluation of pros and cons of clustering effects. PSO algorithm has drawn more attention from the majority of researchers for its preferable impact. This paper gives a new function that measures the effectiveness of the clustering algorithm and analyzes it thoroughly. In addition, from the topology of the PSO, an adaptive population of Gaussian dynamic PSO clustering algorithm is proposed based on the Gaussian dynamic algorithm. The experiment shows the measure function could effectively evaluate the pros and cons of clustering effects, and its corresponding algorithm has good clustering efficiency, better performance in the high-dimensional data.

    参考文献
    相似文献
    引证文献
引用本文

沈亮,常新功,景丽荣.自适应种群的高斯动态粒子群聚类算法①.计算机系统应用,2010,19(8):112-116

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2009-12-15
  • 最后修改日期:2010-01-10
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号