基于云模型的PSO算法求解差异工件单机批调度问题
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然基金(70671096);国家杰出青年基金(B类)(70629002)


Particle Swarm Optimization Based on Cloud Model for Scheduling Single Batch-Processing Machine with Non-Identical Job Sizes
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了提高粒子群(PSO)算法的性能,提出一种基于云模型理论的改进PSO算法,并应用于差异工件单机批调度问题的求解。首先根据粒子的适应值把种群划分为三个子群,提出一种随机的位置和速度更新方法,来有效平衡算法的局部和全局搜索;然后引入基于云模型理论的自适应参数策略,不同的子群采用不同的惯性权重生成方法,提高种群的多样性和算法的收敛速度。实验比较结果验证了该算法的全局搜索性能。

    Abstract:

    An adaptive Particle Swarm Optimization based on cloud model theory is proposed to improve its capability and applied to minimizing the makespan of a single batch-processing machine with non-identical job sizes. The particles are first divided into three groups based on the fitness of the particle to propose a new method for updating location and velocity. Then an adaptive strategy for varying parameters of PSO based on cloud model theory is introduced and different groups adopted different inertia weight generating methods, which does not only improve the convergence speed, but also maintain the diversity of the population. The global search performance of this adaptive algorithm is validated by the results of the comparative experiments.

    参考文献
    相似文献
    引证文献
引用本文

刘娟,陈华平.基于云模型的PSO算法求解差异工件单机批调度问题.计算机系统应用,2010,19(2):164-168

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2009-05-19
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号