改进粒子群算法对BP神经网络的优化
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Improved Particle Swarm Optimization Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    介绍一种基于改进粒子群算法优化BP网络的权值调整综合方法。该算法在传统BP算法的误差反传调整权值的基础上,引入粒子群算法的权值修正,并且在训练神经网络权值的同时优化其连接结构,删除冗余连接,从而建立了基于粒子群算法优化的BP网络新模型。结果表明,改进算法不仅可以克服传统BP算法收敛速度慢和易陷入局部权值的局限,而且很大程度地提高了结果精度和BP网络学习能力。

    Abstract:

    A new method to adjust weights of BP network is proposed. The new model is based on the weight adjustments of traditional BP algorithm by tuning the structure and connection weights of BP network and improved particle swarm optimization simultaneously. The result shows that the improved algorithm can not only overcome the limitations in both the slow convergence and the local extreme values of traditional BP algorithm,but also improve the precision of the result and the learning ability greatly.

    参考文献
    相似文献
    引证文献
引用本文

沈学利,张红岩,张纪锁.改进粒子群算法对BP神经网络的优化.计算机系统应用,2010,19(2):57-61

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2009-06-08
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号