文本分类中基于类别概念的特征选择方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(69983007)


A New Feature Selection Method Based on Class-Concept in Text Categorization
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    传统的TFIDF公式常被用于信息检索各种计算特征项权重的场合,但在文本分类任务下,TFIDF忽略了特征项的类别信息,且较易产生一些不合理的低频高权特征,一定程度上影响了最终分类的准确性。本文提出一种基于类别概念的TFCW特征选择方法,该方法避免了TFIDF的上述缺陷。实验表明该方法用于文本分类中优于目前常见的TFIDF改进算法。

    Abstract:

    参考文献
    相似文献
    引证文献
引用本文

杨奋强,刘玉贵.文本分类中基于类别概念的特征选择方法.计算机系统应用,2009,18(10):93-96

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2009-01-13
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号