2022, 31(12):120-126.DOI: 10.15888/j.cnki.csa.008652
摘要:为了在发生轻微交通事故时, 快速使事故车辆驶离现场, 保证道路畅通, 提出了一种车辆碰撞检测及责任判定模型. 首先结合SSD目标检测算法(single shot multibox detector)和MobileNet轻量级深度网络模型, 对其进行改进以获取每一帧视频图像中运动目标的位置和大小信息, 实现对车辆识别与检测. 其次, 利用卡尔曼滤波器对连续图像帧之间的运动目标建立对应匹配关系, 预测目标的运动状态, 对目标的位置及运动趋势做出判断, 实现车辆轨迹跟踪. 随后通过车辆目标检测框的交并比判断是否发生碰撞. 最后针对直行道路中车辆的速度、方向信息结合道路安全条例及机动车事故快速方法对事故车辆进行责任判定. 结果分析表明, 该研究可实现直行道路场景下的追尾及变道引发的车辆碰撞检测及责任判定.
2021, 30(10):301-306.DOI: 10.15888/j.cnki.csa.008119
摘要:本文面向光学遥感图像目标检测应用, 针对光学遥感图像中的典型目标—飞机和汽车, 提出一种改进的SSD模型: 首先在SSD (Single Shot multibox Detector)网络模型基础上引入多尺度特征融合模块, 实现深层特征与浅层特征的融合以获得更多的特征上下文信息, 增强网络对目标特征的提取能力; 其次根据数据集目标样本尺寸分布特征进行聚类分析获得更准确的默认目标框参数, 从而有效提升网络对目标位置信息的提取能力. 将本文模型与SSD及YOLOv3模型在常用遥感图像目标检测数据集上进行对比, 目标检测精度均有较大提升, 验证了该模型的有效性.
2020, 29(9):149-155.DOI: 10.15888/j.cnki.csa.007452
摘要:SSD (Single Shot multi-box Detector)算法是在不同层的特征图上,进行多尺度对象的检测,具有速度快和精度高的特点.但是,传统SSD算法的特征金字塔检测方法很难融合不同尺度的特征,并且由于底层的卷积神经网络层具有较弱的语义信息,也不利于小物体的识别,因此本论文提出了以SSD算法的网络结构为基础的一种新颖的目标检测算法RF_SSD,该算法将不同层及不同尺度的特征图以轻量级的方式相融合,下采样层生成新的特征图,通过引入感受野模块,提高网络的特征提取能力,增强特征的表征能力和鲁棒性.和传统SSD算法相比,本文算法在精度上有明显提升,同时充分保证了目标检测的实时性.实验结果表明,在PASCAL VOC测试集上测试,准确率为80.2%,检测速度为44.5 FPS.
2020, 29(5):202-208.DOI: 10.15888/j.cnki.csa.007401
摘要:输电铁塔作为架空输电线的重要组成部分,其安全状况将影响整个电力系统的运行,鸟窝的搭建作为影响输电线路正常运行的重要因素之一,需要对此进行监控.而现有的监控手段不仅效率低,还需要耗费大量的人力物力.本文针对这一现象提出一种基于SSD算法的实时检测方法,并在SSD的网络结构基础上将前置网络VGGNet替换为ResNet-101,提高其特征提取能力,并将Softmax loss用Focal loss代替以改善SSD算法中样本不平衡的问题,并利用数据增广提高数据多样性,以提高模型的鲁棒性.实验结果表明本文所提出的方法检测精度对比原SSD算法在准确度和召回率上分别有3.17%和6.35%的提升.
2020, 29(11):227-231.DOI: 10.15888/j.cnki.csa.007594
摘要:视觉追踪是智能机器人的核心功能之一, 广泛应用于自动驾驶、智慧养老等领域. 以低成本树莓派作为下位机机器人平台, 通过在上位机运行事先训练好的深度学习SSD模型实现对人手的目标检测与视觉追踪. 基于谷歌TensorFlow深度学习框架和美国印第安纳大学EgoHands数据集对SSD模型进行训练. 机器人和上位机的软件使用Python在Linux系统下编程实现, 两者之间通过WiFi进行视频流与追踪控制命令的交互. 实测表明, 所研制智能机器人的视觉追踪功能具有良好的稳定性和性能.
2020, 29(2):257-261.DOI: 10.15888/j.cnki.csa.007268
摘要:无人机巡检成为输电线路巡检的重要方式.然而,目前的无人机巡检,由于受到前端设备性能的影响,大多基于后期的图像处理,无法达到实时检测的要求.针对无人机巡检中输电线路施工车辆的安全隐患,提出了一个基于Android平台,使用神经网络实时检测施工车辆的方法.通过收集无人机获取的输电线路施工车辆的数据,使用数据增广的方法,并将构建的SSD-MobileNet算法模型集成到Android平台,实现施工车辆的实时目标检测.
2019, 28(10):8-14.DOI: 10.15888/j.cnki.csa.007101
摘要:目标检测广泛使用于计算机视觉领域.在不同的场景中,我们需要使用不同的数据集训练模型.但是,人工生成数据集标签非常耗时.本文提出一种半自动的方法生成数据集标签,然后按照图像相似度设置的阈值自动筛选,最后保留符合要求的图像和对应的标签作为最终的数据集.实验表明,该方法可以提高数据集生成标签的速度,同时确保了准确率.
2019, 28(3):51-58.DOI: 10.15888/j.cnki.csa.006830
摘要:传统典型的公交车人数统计方法在准确率和速度方面存在一些不足,且提取目标特征的效果较差.本文提出了基于深度卷积神经网络的公交车人数统计系统解决人群计数问题.首先制作数据集,难点在于所有用于训练的数据集均是手工标注.并且公交车摄像头角度比以往文献覆盖更广区域.本文首先比较了多种不同的深度卷积神经网络模型对乘客进行全身检测的效果.综合考虑检测速率、准确率等方面,最终采用单次检测器深度卷积神经网络模型对乘客进行人头目标检测,在线实时目标追踪算法实现人头的多目标追踪,跨区域人群计数方法统计公交车下车人数.系统准确率达到78.38%,运行速率约为每秒识别19.79帧.实现了人群计数.
2019, 28(6):82-88.DOI: 10.15888/j.cnki.csa.006853
摘要:车辆目标检测与跟踪是高速公路视频监控系统实时监控获取交通参数的关键步骤.本文提出了一种面向高速公路场景的目标轨迹时序信息结合核相关滤波KCF算法的车辆目标跟踪方法,实现了车辆目标的高精度持续跟踪.该方法首先采用基于深度学习的单目标检测SSD算法,通过建立车辆数据集,实现了适用于高速公路场景的车辆目标的分类与检测.然后,基于目标轨迹时序信息实现目标车辆与轨迹的匹配,并且采用KCF跟踪算法对丢失目标进行预测重定位,从而实现车辆目标轨迹的持续跟踪.实验表明,该跟踪方法精度高,且适应多种不同场景,具有较高的应用价值.
2019, 28(1):94-99.DOI: 10.15888/j.cnki.csa.006748
摘要:目标检测是机器人技术领域中重要的技术环节,而作为机器人开发领域中最受欢迎的平台之一,ROS (Robot Operating System)平台实现快速准确的目标检测功能是非常必要的.目前深度学习方法是实现目标检测功能的核心技术,但当前ROS平台自带的目标检测数据包实现原理仍是基于传统的局部图像特征描述方法,目标检测鲁棒性差,泛化能力弱.本文就将针对以上问题,提出一种基于SSD_MobileNet框架,结合独立制作的图像数据集训练定制的目标检测模型,并将模型集成到ROS平台实现快速准确的目标检测功能.