2022, 31(7):23-34.DOI: 10.15888/j.cnki.csa.008566
摘要:图像超分辨率重建是用于提高图像质量的一项重要技术, 得益于深度学习在计算机视觉领域的成功应用和快速发展, 单图像超分辨率重建的效果得到了显著提升. 因此, 本文针对基于深度学习的单图像超分辨率重建方法展开深入研究, 首先综合介绍了用于该领域的基准数据集、性能评价指标、损失函数等相关知识, 然后对有监督学习和无监督学习下单图像超分辨率重建技术的最新算法进行分类讨论, 并且比较分析了不同模型之间的异同点与优缺点, 最后对该领域面临的问题和未来的发展方向进行了总结与展望.