2016, 25(11):274-278.DOI: 10.15888/j.cnki.csa.005552
摘要:粮食产量的变动受到多种因素的共同影响,各因素之间往往具有十分复杂的非线性关系,传统的预测方法大多无法反映这种变化规律而影响了预测的准确性.BP神经网络模型具有很好的非线性逼近能力,对中国粮食产量能实现比较准确的预测;主成分分析可以对具有模糊关联的变量数据进行降维,其与BP神经网络的组合能优化模型的网络结构,提高预测精度.实证结果表明,组合模型预测结果的精度提高了3%,网络训练的收敛速度和效率也得到不同程度的改善.