E-mail: csa@iscas.ac.cn http://www.c-s-a.org.cn Tel: +86-10-62661041

基于改良编码与高斯过程的交互式医学图像分割①

张小瑞^{1,2},莫云菲³,孙 伟⁴

¹(南京信息工程大学 电子与信息工程学院,南京 210044) ²(南京工业大学 计算机与信息工程学院,南京 211816) ³(南京信息工程大学 计算机学院,南京 210044) ⁴(南京信息工程大学 自动化学院,南京 210044) 通信作者:张小瑞, E-mail: zxr365@126.com

摘 要: 医学图像分割是众多医学临床应用的基础与关键组成. 近年来, 交互式分割方法凭借其在复杂临床任务中 的高准确性和鲁棒性受到广泛关注. 然而, 现有基于深度学习的交互式分割方法在用户交互的利用上仍有不足, 特 别是在交互编码设计和像素分类等方面. 针对上述问题, 本文提出了一种包含"近中心点"和"外边缘点"的混合交互 设计, 以保障交互成本并对用户意图进行精准捕捉; 同时, 通过高斯衰减函数对现有测地线距离编码方法进行加权, 以降低图像噪声干扰, 提高交互编码的鲁棒性和准确性; 此外, 结合基于混合核函数的高斯过程分类方法, 在像素分 类过程中对用户交互信息进行充分利用, 提升分割精度并赋予模型一定的可解释性. 实验结果表明, 本文所提方法 在 MSD 数据集 4 个标志性子集的 5 项分割任务中均表现出较高的分割精度, 尤其在复杂任务 (如 Pancreas tumour 和 Colon 图像分割) 中, Dice 系数和 ASSD 值显著优于现有方法, 体现了其在精准分割和边界处理方面的优势. 关键词: 医学图像分割; 交互式图像分割; 深度学习; 高斯过程分类

引用格式:张小瑞,莫云菲,孙伟.基于改良编码与高斯过程的交互式医学图像分割.计算机系统应用.http://www.c-s-a.org.cn/1003-3254/9846.html

Interactive Medical Image Segmentation Based on Improved Encoding and Gaussian Process

ZHANG Xiao-Rui^{1,2}, MO Yun-Fei³, SUN Wei⁴

¹(School of Electronic & Information Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China) ²(College of Computer and Information Engineering, Nanjing Tech University, Nanjing 211816, China)

³(School of Computer Science, Nanjing University of Information Science & Technology, Nanjing 210044, China)

⁴(School of Automation, Nanjing University of Information Science & Technology, Nanjing 210044, China)

Abstract: Medical image segmentation serves as a fundamental and critical component in numerous clinical applications. Recent advancements in interactive segmentation methods have attracted significant attention due to their high accuracy and robustness in complex clinical tasks. However, current deep learning-based interactive segmentation methods exhibit limitations in leveraging user interactions, particularly in interactive encoding design and pixel classification. To address these limitations, this study proposes a hybrid interaction design incorporating "near-center points" and "outer-edge points", which ensures low interaction costs while accurately capturing user intent. Additionally, the existing geodesic distance encoding method is enhanced by a Gaussian attenuation function to mitigate image noise interference and improve the robustness and accuracy of interaction encoding. Furthermore, a Gaussian process classification, enhancing segmentation accuracy while endowing the model with interpretability. Extensive experiments on five segmentation tasks across four representative subsets of the medical segmentation decathlon (MSD) dataset demonstrate that the proposed method achieves consistently high segmentation accuracy. In particular, for complex tasks such as

① 基金项目:国家自然科学基金 (62272236, 62376128); 江苏省自然科学基金 (BK20201136, BK20191401) 收稿时间: 2024-10-29; 修改时间: 2024-11-19; 采用时间: 2024-12-04; csa 在线出版时间: 2025-03-31

pancreas tumor and colon image segmentation, this method has significantly higher Dice coefficients and ASSD values than existing methods, showing its strengths in precise segmentation and boundary refinement.

Key words: medical image segmentation; interactive image segmentation; deep learning; Gaussian process classification

医学图像分割任务的主要目标在于从医学图像中 准确分割出器官、病灶等用户感兴趣的结构,是医学 三维重建与定量分析等任务中的关键步骤,更是病灶 区域量化、治疗手段选择、放射治疗等重要技术的基 础前提^[1-3]. 医学图像分割结果的准确性直接影响着医 生对疾病状况的判断及后续治疗方案的选择,因此,如 何在保证计算成本的基础上提升分割准确性一直是研 究的焦点之一.

目前,借助大规模数据集和监督学习的支持,以 FCN^[4]、U-Net^[5]等深度学习模型为代表的自动分割模 型已经能够在一些简单的医学分割任务中实现与人类 专家相媲美的效果[6-9]. 然而, 这一成就仅限于常规任 务领域,在更为广泛、具体的应用场景下,受到患者隐 私保护与样本标注成本限制, 医学图像分割任务普遍 面临着样本数据稀缺的挑战^[10].此外,在诸如肿瘤病灶 区域图像分割等的复杂应用场景中,所涉及的显著病 患个体差异及组织结构的复杂性等问题更进一步限制 了自动图像分割方法的效果.相比之下,交互式图像分 割方法借助用户针对性的指示交互信息对模型的分割 过程进行指导,不仅降低了模型对于大规模数据集的 依赖,也使得模型能够在复杂、多变的医学图像分割 任务中保持较高的准确性和鲁棒性[11-15]. 然而, 如何准 确捕捉用户意图并进行有效编码,同时结合用户交互 信息和医学图像特性提取像素特征,从而实现精准分 割,仍是该领域的关键研究挑战.

近年来, 以卷积神经网络 (CNN) 为代表的深度学 习技术在图像处理领域取得了显著进展, 并被广泛应 用于医学图像的交互式分割任务中. CNN 凭借其强大 的局部特征提取和多层次表示能力, 能够对复杂的医 学图像结构进行精确建模, 使其在捕捉纹理、边缘以 及空间语义信息方面表现出色. 在交互式分割任务中, CNN 方法通过将用户提供的交互信息 (如点击、涂鸦 等) 编码为特定形式的引导特征, 并与原始图像一同输 入网络, 以动态调整分割边界, 展现出显著的灵活性与 高效性. 这使得 CNN 在医学图像分割中具备自动化、 可扩展性强和快速迭代的优点. 然而, 现有的交互编码 方法在整合用户交互信息时,仍存在难以有效综合全 局上下文信息的局限性.同时,这些方法容易受到噪声 和灰度变化的干扰,特别是在医学图像边界模糊、对 比度低的情况下,难以满足分割任务对精度和鲁棒性 的高要求.此外,尽管基于 CNN 的自动图像分割方法 在很多场景中表现出色,但许多现有的交互式图像分 割方法在设计上依然主要是通过对自动分割框架的模 块(如像素对比模块)进行改进,缺乏针对交互任务特 点的专门优化.这种对自动分割框架的依赖限制了交 互式方法在动态调整和灵活应对复杂分割场景的潜力.

针对上述问题,为了准确捕捉用户意图,充分利用 用户交互信息,提升模型在应对复杂分割任务时的准 确性和鲁棒性,本文提出了一种基于改良测地线距离 编码和混合高斯过程分类的医学图像交互式分割方法, 对交互编码方法、像素分类方法以及用户初次交互等 模块进行了设计和改良.具体而言,本文的贡献主要包 含以下几个部分.

(1)利用高斯衰减函数对测地线距离进行加权,提出了一种高斯测地线距离编码方法,利用高斯衰减函数平滑过渡和快速衰减的特性,进一步降低图像噪声干扰,提高编码结果的鲁棒性和准确性;

(2)结合基于混合核函数的高斯过程分类方法改进像素分类过程,利用用户指示交互建模像素特征与标签之间的映射关系,通过混合核函数捕捉医学图像中不同尺度的特征,在提高分割精度的同时,赋予模型一定的可解释性;

(3)设计了一种"外边缘点"与"近中心点"结合的混 合点击交互形式,结合分割目标的全局边界信息与局 部结构信息,进一步丰富用户标注中蕴含的指示信息, 提升分割的准确性、鲁棒性和效率.

本文在医学图像算法领域具有标志性的 MSD 数 据集中的 4 个标志性子集上进行了广泛实验,本文方 法在所涉及的 5 项分割任务中均表现出较高的分割精 度,尤其在复杂分割任务中表现出色,分割效果显著优 于现有方法.

1 相关工作

传统的交互式分割方法通常着眼于待分割图像的 低级特征 (灰度特征、颜色分布等)^[16-18],以此建立基 于优化的图像模型. 然而, 医学图像普遍存在边界模 糊、对比度低的问题, 在处理医学图像分割任务时, 其 低级特征往往无法有效区分分割目标与背景, 这也就 导致基于低级特征的传统交互式医学图像分割方法通 常需要大量的用户交互和较长的用户时间才能获得较 为可靠的结果. 机器学习方法的引入一定程度上缓解 了这一问题^[19-21]. 其通过主动选择候选区域向用户询 问, 从而获得大量信息性的用户反馈, 以减少精确分割 所需用户交互数量与用户时间. 然而此类算法需要研 究人员基于理解与经验自己设计、选择用于训练机器 学习模型的特征, 这不仅会耗费大量的时间与精力, 也 使得模型缺乏表达能力与适应性.

近年来, 以卷积神经网络 (CNN) 为代表的深度学 习技术在图像处理领域取得了显著的成效,这一框架 也迅速被应用到交互式医学图像分割这一领域中[22-27]. 如 Wang 等^[10]提出的基于双 CNN 的 DeepIGeoS 框架, 利用一个 CNN 生成初次自动分割结果, 另一个 CNN 修正并细化用户交互信息. Koohbanani 等^[26]在卷积神 经网络的基础上结合迁移学习来分割皮肤病变及其属 性,利用多尺度信息融合生成预测结果. Sakinis 等^[27] 在 FCNN 基础上提出了适用于 2D 医学图像的分割框 架,支持用户通过新增或移动点击来细化分割结果.借 助 CNN 强大的局部特征提取和特征表示能力,此类方 法均取得了较为不错的成绩. 整体而言, 基于卷积神经 网络的医学图像交互式分割方法通常遵循以下步骤: 1) 获取并编码用户交互信息; 2) 将待分割图像与编码 的后用户交互输入到卷积神经网络,提取多尺度的图 像特征;3)逐像素分类,生成像素标签分类概率图;4) 阈值化概率图,获取预测分割结果.在此过程中,用户 的交互信息通常不会直接输入神经网络,而是首先经 过点击编码,以进一步提取用户交互标注中包含的指 示聚焦信息,获得相应的交互线索图后,再与待分割图 像共同输入神经网络,从而指导图像及像素特征提取.

因此,如何准确、有效编码用户交互信息至关重 要,专家学者提出了众多方案.例如,Li等^[28]和 Xu等^[29] 采用了简单且高效的欧几里得距离变换,将用户的正 负点击转换为两个欧氏距离映射.而 Maninis等^[23]和 Wang 等^[30]则通过高斯函数将用户交互编码为高斯热 图. 这两种方法虽然简单直观, 却没有综合考虑图像灰 度变化与局部结构. 在此基础上, Khan 等^[31]提出了一 种置信图 (confidence map) 编码方法, 设计映射函数来 计算目标图像中每个像素与用户标注极值点之间的关 系,从而为每个像素赋予一个置信分数 (confidence score). 虽然置信分数的映射关系可以依据不同的分割 任务灵活调整,但其编码效果高度依赖于用户标注的 准确性和映射关系函数的选择,因此在应对不同结构 类型的分割任务时,需要重新设计合适的交互位置和 映射关系函数. Wang 等^[10]则引入了测地线距离来对用 户标注进行编码.这种方法不仅能体现像素间的几何 距离关系,还综合了灰度变化、纹理细节等局部特征. 但该编码方法易受噪声和灰度分辨率的影响,在处理 复杂图像结构时,常常会出现路径不平滑或结果不自 然的编码效果.

在依据用户交互和待分割图像通过神经网络获 得多尺度图像特征之后,需要据此对待分割图像的每 个像素的所属标签进行预测.目前常用的分类器有 Sigmoid^[5]、Softmax^[4]、CRF (条件随机场)^[32]等. 其中 Sigmoid 分类器计算效率较高但仅适用于二元分类任 务. Softmax 分类器能够应对多类别分类任务, 但在处 理高维度、多类别问题时计算成本过高,因此通常结 合交叉熵损失函数来衡量分类器输出的概率分布与真 实类别分布之间的差异,优化 Softmax 分类器的性能, 提高收敛速度和分类精度^[33,34]. CRF 作为后处理方法, 利用像素间上下文关系优化分类结果,进一步优化分 类器的输出结果,对边缘细节的分割效果有显著提升. 然而,上述常规分类器均依赖逐像素对比分类,未能在 像素分类过程中充分利用交互指示信息,这显然是一 种浪费.为此,Zhou等^[35]结合高斯过程分类模型与深 度神经网络提出 GPCIS 模型, 该模型在自然图像分割 中效果显著,但在处理医学图像中复杂且形状不规则 的分割目标时,难以满足任务需求.

此外,交互式分割方法依赖于用户的指示标注来指导后续分割过程,因此,用户交互的效率和质量直接影响模型的整体性能,为了实现在最小化用户交互成本的同时获取丰富指示信息这一目标,研究者们设计了多种交互形式,如框选^[22]、涂鸦^[24]和点击^[11,23,30]等.显而易见的是,框选、涂鸦等交互形式能够为模型提供更为丰富、具体的指示信息,但它们通常需要用户投入较多时

间与精力以实现精准交互^[23].相比之下,点击交互因其 灵活性和较低的用户成本而受到青睐.常规的点击交互 设计通常会引导用户标注前景和背景两类点,但单一的 前景、背景属性只能提供局部信息的输入,无法有效捕 捉待分割目标的整体形状或边界信息.在此基础上,Xu 等^[29]提出以第1个点击信息生成注意力权重,这种方 法有效引导后续分割过程,减少了后续点击所需的数量 和精确度.但其过度依赖第1个点击的质量,使得模型 的鲁棒性得不到保障,且对于形状复杂或不规则的目标 物体,第1个点击生成的 attention 可能只涵盖一部分 目标区域,导致模型对目标的整体理解不足.Maninis 等^[23]则尝试通过极值点的点击设计减少用户点击次 数、丰富标注信息,但极值点交互对于用户交互的精确 度要求过高,需要用户投入大量精力,反而增加了交互 成本.针对这一问题,Luo等^[14]提出了一种在待分割目标内部近边缘位置进行点击的交互设计,相较于极值点,这种交互设计有效减轻了用户负担,但集中在待分割目标内部的点击忽视了周围背景对目标的影响,在处理形状复杂目标时面临挑战.

2 方法

本文提出的基于改良测地线距离编码和混合高斯 过程分类的医学图像交互式分割方法,旨在通过优化 点击交互设计、交互编码方式与像素分类方法,在模 型的各个部分实现对用户指示交互信息的准确提取与 充分利用,从而提升在医学图像分割任务中分割精度 和鲁棒性.整体结构如图1所示,可以分为3个关键模 块:点击编码、特征提取和像素分类.

在点击编码模块中,针对初次交互,本文提出了一 种融合点击交互方法,引导用户在分割目标内部近中 心区域与外侧边缘附近进行前景、背景的点击标注. 通过获取到的外边缘点,定位分割目标所在区域,对待 分割图像进行宽松裁剪,以缩小后续处理范围. 在裁剪后的待分割图像的基础上,通过本文提出 的高斯测地线距离编码方法对用户提供的初次交互 进行编码.而后将编码图像与裁剪后的待分割图像进 行级联,导入特征提取模块,生成逐像素的像素特征 矩阵.

4

在像素分类模块中,本文结合高斯过程分类对现 有医学图像交互式分割方法模块构成中的像素分类模 块进行改良,依据像素特征矩阵,采用混合核函数对像 素间关系进行捕捉,利用用户标注信息建模像素特征 与像素标签之间的映射关系,对未标注像素进行分类, 获取预测的分割结果.用户可以对预测的分割结果进 行修正,直到获取满意结果.

2.1 融合点击交互

在交互式图像分割任务中,用户初次交互是系统 获取用户意图的关键步骤.其质量和精度决定了模型 对目标区域的初步认知,若无法从用户初次交互中获 取充分、准确的指示信息,系统可能会误判目标区域, 进而影响整个分割过程的效率和准确性.因此,设计一 个既能准确传递用户意图、又能降低用户操作负担的 初次交互方式至关重要.虽然框选、涂鸦等交互形式 能够提供更为丰富的信息,却也需要用户付出更多的 交互成本来实现精准标注.因此,本文采用了点击交互 作为基础交互形式,以保证较低的用户交互成本,减少 交互误差.传统的"前景点+背景点"点击交互形式只能 提供局部信息的输入,无法有效捕捉待分割目标的整 体形状或边界信息.而在复杂的医学图像中,单一类型 的交互信息难以完整表达目标对象的形状和边界信息.

因此,本文对前景与背景的点击标注位置分别进 一步的细化与规定,设计了一种"近中心点+外边缘点" 的融合交互形式. 该交互形式引导用户提供两组关键 点:一组位于分割目标内部、靠近中心区域的前景点 $S_c = \{p_1, p_2, \cdots, p_n\}$, 另一组位于分割目标外侧、靠近 边界的背景点 $S_e = \{q_1, q_2, \cdots, q_m\},$ 作为初始交互. 该交 互形式的优点在于,规定点击位置增强了用户提供信 息的针对性,从中系统能够更准确地识别用户聚焦区 域,减少误判,外边缘点的标注还可以用于生成一个完 整包含分割目标的宽松边界框 $Box = \{x_1, y_1, x_2, y_2\}$. 基 于该边界框,本文对待分割图像I进行裁剪,获得裁剪 后的待分割图像1′以缩小后续处理范围,从而显著减少 后续计算的复杂度.提升计算效率的同时,系统能够集 中计算资源于相关区域,从而提升分割的精度和性能. 而在获取初次预测分割结果后的迭代修正阶段,我们 没有对用户交互位置进行具体规定,用户仅需要直接 在分割缺失以及溢出部分补充前景、背景点击标注.

2.2 高斯测地线距离编码

在交互式分割任务中,用户提供的交互信息无法

直接用于神经网络进行特征提取,需要通过编码将这 些交互指示信息转换为网络可识别的形式.此外,准确 有效的交互编码还能捕捉用户交互中所包含的聚焦信 息,为模型后续工作提供参考.

为综合考虑几何距离、灰度变化、纹理细节等上 下文信息,并减少医学图像噪声带来的干扰,本文在测 地线距离编码的基础上设计了一种改良的高斯测地线 距离编码方法,以准确引导网络识别图像中的目标特 征,提升编码在复杂分割任务中的准确性和鲁棒性.

具体而言,本文采用高斯衰减函数对测地线距离 进行加权,以降低远距离路径对计算的影响.在医学图 像中,灰度值或纹理渐变常伴随着噪声或非均匀性,尤 其是在复杂组织或病变区域,远距离像素间的相似性 可能会掩盖真实边界信息.通过加权,能够有效减小长 路径带来的累积误差,增强分割方法在高噪声或灰度 不均匀区域中的鲁棒性,确保模型对局部重要特征的 敏感度更高,避免远离交互点的噪声干扰影响整体计算.

在本文的设计中,用户初次交互时提供的点击标 注会依据位置类型被分为两组,中心附近内部点(前景 点) S_c 可以帮助确定目标的核心区域,而外边缘点(背 景点) S_e 则有助于准确描绘目标的边界,避免模糊或噪 声影响边界识别.基于此,我们分别对 S_c 和 S_e 进行编 码,生成两张点击编码图像,用于进一步提升模型对目 标区域和边界的区分能力.假设*i*是裁剪后的待分割图 像I'中的一个像素,则裁剪后的待分割图像I'上,从像 素*i*到用户标注像素集合S(其中 $S \in \{S_e, S_c\}$)的高斯测 地线距离G(i, S, I)为:

$$G(i, S, I') = \min_{j \in S} \exp\left(-\frac{D_{\text{geo}}(i, j, I')}{2\sigma^2}\right)$$
(1)

$$D_{\text{geo}}(i, j, I') = \min_{p \in P_{i,j}} \int_0^1 \|\nabla I(p(s)) \cdot u(s)\| \, \mathrm{d}s \qquad (2)$$

其中, $P_{i,j}$ 是像素 $i \ \pi j$ 之间所有可能路径的集合, $p \$ 是路径集合中的一条可行路径, 用参数 $s \in [0,1]$ 参数化. u(s)是与路径 p 方向相切的单位向量, 定义为 $u(s) = p'(s) / \| p'(s) \|$. 超参数 σ 控制高斯衰减的速度, 并在训练过程中通过优化自动调整.

2.3 像素特征提取

在获取裁剪后的待分割图像I'及其对应的点击编码图像后,二者作为输入共同导入卷积神经网络.这一过程旨在结合目标区域信息和用户交互信息,从而有效捕捉图像特征并提取像素特征.为确保框架灵活

性、可迁移性和可扩展性,本文的设计不依赖于固定的 CNN 结构,而是允许灵活替换并支持后续升级和发展.

针对本文聚焦的医学图像分割任务,我们采用在 医学图像自动分割领域表现突出的 nnU-Net^[33]作为特 征提取模块,对裁剪后的待分割图像I'的像素特征进行 提取,以获得像素特征矩阵X.随后,我们将该特征举证 与裁剪后的待分割图像I'以及来自点击编码模块的点 击编码图像进行级联,而得到融合特征矩阵X,为后续 像素分类提供依据.为增强模型在处理医学图像时的 稳定性和效率,本文用实例归一化层替换了批量归一 化层,这种调整能够在更小批量的情况下仍保持较好 的归一化效果.同时,将特征通道数减少为原来的 1/4, 以在性能、存储开销和计算时间之间取得更好的平衡.

2.4 基于混合核函数高斯过程分类的像素分类模块

在医学图像分割任务中,像素分类是整个流程的 核心任务之一.通过计算像素所属标签的概率,为每个 像素分配前景或背景标签,从而精确提取用户感兴趣 的结构.然而,现有像素分类方法往往未能充分利用用 户交互信息,导致模型准确性受到限制.针对这一问题, 本文采用一种基于高斯过程分类器 (Gaussian process classifier, GPC)的像素分类方法,以用户标注的像素作 为样本,通过核函数捕捉像素间的关系,从而对未标注 的像素进行标签预测,实现在像素分类过程中对用户 交互信息的进一步利用.同时,针对医学图像分割任务 复杂多样的特点,本文设计了一种结合多种特征的混 合核函数,以提升模型对医学图像中模糊边界特征的 捕捉能力,进一步提升像素分类的准确性与鲁棒性.

2.4.1 基于高斯过程分类的像素分类模块

待分割图像上像素的特征向量 x 与其对应的标签 y 的映射关系可以表示为y = f(x),依据高斯过程假设, 在不考虑噪声的情况下,映射函数f服从一个 0 均值的 高斯过程先验分布,即:

$$f \sim GP(0, K(x, x')) \tag{3}$$

其中, K(·,·)是核函数, 用于衡量任意两个点x和 x'之间 的相似性. 以用户交互过程中标注像素的特征 X_c 以及 对应标签y_c为训练样本, 依据未标注像素的特征 X_u, 推 测未标注像素的标签y_u的任务可以通过如下公式表示:

$$p(y_{u}|X_{u}, X_{c}, y_{c}) = \int p(y_{u}|f_{u}) \cdot p(f_{u}|X_{u}, X_{c}, y_{c}) df_{u} \quad (4)$$

其中, p(fu|Xu,Xc,yc)是条件分布, 表示在给定用户标注

的像素信息的情况下,未标注像素对应的函数值 fu 的分布; 而 p(yu | fu)则是一个基于 Sigmoid 函数的转换函数,用于将连续的函数值 fu 转换为离散的分类标签. 通过对未标注像素的特征进行推断,可以得出标签的概率分布.

接下来, 对 $p(f_u|X_u, X_c, y_c)$ 进行计算:

$$p(f_{u}|X_{u}, X_{c}, y_{c}) = \int p(f_{u}|X_{u}, X_{c}, f_{c}) \cdot p(f_{c}|X_{c}, y_{c}) df_{c}$$
(5)

其中, $p(f_c|X_c, y_c)$ 为高斯后验分布:

$$p(f_c|X_c, y_c) = \frac{p(y_c|f_c) p(f_c|X_c)}{p(y_c|X_c)}$$
(6)

在高斯过程的框架下,标注像素和未标注像素对 应函数值fc和fu的联合分布为:

$$\begin{bmatrix} f_c \\ f_u \end{bmatrix} \sim N \left(0, \begin{bmatrix} K_{cc} & K_{cu} \\ K_{uc} & K_{uu} \end{bmatrix} \right)$$
(7)

通过对高斯过程进行条件推断,可以得到未标注 像素函数值的条件分布:

$$f_{u}|X_{u}, X_{c}, f_{c} \sim N\left(K_{uc}K_{cc}^{-1}f_{c}, K_{uu} - K_{uc}K_{cc}^{-1}K_{cu}\right)$$
(8)

然而,由于医学图像分割属于二元分类任务,像素标签y是离散的二元变量 (0 或 1),因此似然函数 $p(y_c|f_c)$ 不能使用高斯分布进行建模,这也就导致后验分布 $p(f_c|X_c,y_c)$ 难以计算.为此,我们引入拉普拉斯近似法,通过对 $logp(f_c|X_c,y_c)$ 进行二阶泰勒展开,得到后验分布的高斯近似.近似后的高斯分布 $q(f_c|X_c,y_c)$ 为:

$$q(f_c|X_c, y_c) = N(f_c|\hat{f}_c, H^{-1})$$
(9)

其中, \hat{f}_c = argmax log $p(f_c | X_c, y_c)$, 是后验分布的最大 后验估计值, $H = -\nabla^2 \log p(f_c | X_c, y_c)|_{f_c = \hat{f}_c}$, 是 \hat{f}_c 处的负 Hessian 矩阵. 通过高斯近似后, 积分公式可以简化为:

$$p(f_u|X_u, X_c, y_c) \sim N(\mu_u, \Sigma_u)$$
(10)

其中,均值和协方差矩阵分别为:

$$\mu_u = K_{uc} K_{cc}^{-1} \hat{f}_c \tag{11}$$

$$\Sigma_{u} = K_{uu} - K_{uc} K_{cc}^{-1} K_{cu} + K_{uc} K_{cc}^{-1} H^{-1} K_{cc}^{-1} K_{cu}$$
(12)

最后, 通过 Sigmoid 函数对预测结果进行处理, 得 到每个像素为前景 (即yu = 1) 的概率分布, 进而生成最 终的预测分割结果. 为了保证全图像素的一致性, 进一 步避免用户的交互误差, 我们对包含用户标注像素在 内的所有像素都进行了像素标签预测, 以获取最后的 预测分割结果.

2.4.2 混合核函数设计

在实际应用中,核函数的选择对高斯过程分类的 效果起着至关重要的作用.特别是在处理具有模糊边 界和噪声干扰的医学图像时,单一核函数往往难以全 面捕捉像素之间复杂且多样化的关系.这是因为单一 核函数通常只能关注某一方面的特征,例如图像的空 间结构或灰度信息,难以同时兼顾多维特征的差异性 和互补性,尤其是在边界模糊、灰度不均匀或含有噪 声的图像中表现尤为明显.

为解决这一问题,本文设计了一种结合多种特征 的混合核函数,其由径向基核函数 (RBF kernel)和马顿 核函数 (Matern kernel)组成.径向基核函数具有较强的 局部敏感性,能够很好地捕捉图像中像素间的细微差 异,尤其是在处理灰度变化显著的区域时表现优异.而 马顿核函数则能够通过调整平滑性参数v,在空间相关 性和模型复杂度之间找到平衡,适合处理存在噪声或 边界模糊的医学图像.具体公式定义如下:

$$k_{\text{mixed}}(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}) = \alpha_{1} \cdot \exp\left(-\frac{\|\boldsymbol{I}_{i} - \boldsymbol{I}_{j}\|^{2}}{2\tau^{2}}\right) + \alpha_{2} \cdot \exp\left(1 + \frac{\sqrt{2\nu}d(\boldsymbol{x}_{i}, \boldsymbol{x}_{j})}{\ell}\right)$$
(13)

其中, I_i 和 I_j 分别表示像素 i 和 j 的像素值信息; x_i 和 x_j 分别表示从深度神经网络提取到的像素 i 和 j 的深度 特征向量, $d(\mathbf{x}_i, \mathbf{x}_i)$ 像素 i 和 j 在深度特征空间中的距 离;v是平滑性参数,针对医学图像常见的复杂性问题, 如噪声、模糊边界和复杂结构等,本文采用了 Matern 5/2 核, 即 $v = \frac{5}{2}$, 以更灵活的建模像素间相似性; α_1 和 α_2 是权重系数, $\tau \pi \ell$ 是用于调整核函数灵活性的超参 数. 通过结合这两种核函数, 模型不仅能够更好地捕捉 图像的局部结构信息,还能够在面对噪声和模糊边界 时具备更强的鲁棒性.具体而言, RBF 核函数有助于精 确识别图像中的细节变化,而 Matern 核函数则通过其 灵活性适应更广泛的像素间关系,提升分类器对不同 复杂场景的适应性和泛化能力.这种混合核函数设计 有效提高了模型在医学图像分割任务中的表现,特别 是在边界模糊和噪声干扰较大的情况下,能够更准确 地进行像素分类,提取目标区域.

2.5 模型损失

模型训练所用复合损失函数L结合了分割主任务的损失和高斯过程的优化目标,以充分利用交互信息

并优化分割性能,其具体形式为:

$$L = L_{\text{Main}} + \mu L_{\text{GP}} \tag{14}$$

其中, *L*_{Main}为主任务损失, 用于提升分割任务的区域覆 盖和分类精度; *L*_{GP}为高斯过程损失, 用于优化高斯过 程分类模块的性能; 损失权重参数µ用于平衡两部分损 失的贡献值, 本文中设置为 0.001.

主任务损失L_{Main}结合了 Dice 损失L_{Dice}和交叉熵 损失L_{CE},以分别优化分割区域的整体覆盖率和像素级 分类精度,其定义为:

$$L_{\text{Main}} = \lambda_1 L_{\text{Dice}} + \lambda_2 L_{\text{CE}}$$
(15)

其中, λ₁和λ₂为权重系数, 本文中均设置为 0.5. 高斯过 程损失*L*GP于优化高斯过程分类模块的后验分布, 确保 混合核函数能够准确捕捉医学图像中的多尺度特征. 其定义为:

$$L_{\rm GP} = L_{\rm Pred} + \omega L_{\rm Reg} \tag{16}$$

其中L_{Pred}为预测损失,采用负对数似然 (NLL) 来衡量 高斯过程模型对训练数据的拟合程度; L_{Reg}为正则化 损失,用于限制高斯过程后验分布与先验分布的偏离 程度,通过 KL 散度定义; ω为正则化权重,本文设置 为 0.01.

为了使模型能够从训练数据中自适应调整,本文 框架所涉及的关键超参数是以端到端的方式从训练数 据中自动学习的,包括用于高斯测地线距离编码的参 数σ,以及用于混合核函数高斯过程分类的α1、α2、 τ和ℓ,以更好地捕捉医学图像的局部细节与全局特性, 从而增强分割的准确性与鲁棒性.

3 实验

3.1 数据集

本文在 medical segmentation decathlon (MSD)数据集上验证了所提出的框架. MSD 数据集是一个涵盖了多种医学图像分割任务的大型标准化数据集,是医学图像分割算法研究领域的重要基准之一. 该数据集由来自世界各地的研究机构和医疗中心提供,涵盖了10种不同的医学图像分割任务,包括脑部、心脏、肺部、肾脏等多个器官的分割. 我们在其中4个具有代表性和挑战性的子集上进行了实验,如表1 所示.

(1) 肺部子集 (Task06_Lung), 包含 63 例非小细胞 肺癌患者的术前薄层 CT 扫描. 任务目标是分割肺内的 肿瘤. 本文从 63 例 CT 扫描图像中提取到包含分割目 标的有效切片 467 片,随机选取了其中 200 片作为训练集,并从剩余切片中随机选择了 150 片作为测试集.

(2) 胰腺子集 (Task07_Pancreas), 包含 281 例胰腺 肿块切除患者的门静脉期 CT 扫描. 任务目标是分割胰 腺实质和胰腺肿瘤. 本文从 281 例 CT 扫描图像中提取 到包含分割目标的有效切片 2193 片, 随机选取其中 的 400 片作为训练集, 并从剩余切片中随机选择了 200 片作为测试集.

(3) 脾脏子集 (Task09_Spleen), 包含 61 例接受化 疗治疗的肝脏转移瘤患者的门静脉期 CT 扫描. 任务目 标是脾脏分割. 本文从 61 例 CT 扫描图像中提取到包 含分割目标的有效切片 466 片, 随机选取其中 200 片 作为训练集, 并从剩余切片中随机选择 150 片作为测 试集.

(4)结肠子集 (Task10_Colon),包含 126 例接受原 发结肠癌切除术患者的门静脉期 CT 扫描.任务目标是 分割结肠癌的原发肿瘤.本文从 126 例 CT 扫描图像中 提取到包含分割目标的有效切片 1002 片,随机选取其 中的 400 片作为训练集,并从剩余切片中随机选择 200 片作为测试集.

表 1	所用	MSD	教据集子集概监
12.1	771711	IVIOD.	

			.,,	• • • • • • • • • • • • =	
编号	名称	模态	分割目标	训练样本	测试样本
06	Lung	СТ	肿瘤	200	150
07	Pancreas	CT	胰腺/肿瘤	400	200
09	Spleen	CT	脾脏	200	150
10	Colon	СТ	肿瘤	400	200

3.2 评价指标

为了从客观数据角度验证本文算法的有效性,对 算法性能进行定量评估,本文采用了戴斯系数 (Dice) 和平均表面距离 (ASSD) 作为衡量模型效果的统计指标. 戴斯系数 (Dice coefficient, Dice),也称为戴斯相似 性系数 (Dice similarity coefficient, DSC),是用于衡量 分割的模型预测结果和真实标签之间相似度的统计指标,其公式如下:

$$Dice = \frac{2\left|\mathcal{R}_p \cap \mathcal{R}_g\right|}{\left|\mathcal{R}_p\right| + \left|\mathcal{R}_g\right|} \tag{17}$$

其中, *R_p*和*R_g*分别表示预测分割区域和真实分割区域. |·表示对应区域的像素数. 其结果通常乘以 100 表示为 百分比形式, 即 *Dice* (%), 以直观体现预测结果与真实 标签之间的相似度, 体现模型分割质量. 平均表面距离 (average symmetric surface distance, *ASSD*) 是用来衡量 两个表面 (例如, 模型预测结果的表面和真实标签的表面) 之间平均距离的指标. 该指标反映了两个分割边界 之间的对称性差异. 其计算公如下:

$$ASSD = \frac{\sum_{i \in S_p} d(i, S_g) + \sum_{i \in S_g} d(i, S_p)}{|S_p| + |S_g|}$$
(18)

其中, $S_p 和 S_g 分别表示模型预测结果和真实标签的表面点集, <math>d(i,S_g)$ 表示点i到表面 S_g 之间的最短欧氏距离. 通常, ASSD 以像素 (pix) 为单位. ASSD 值越低, 表示分割结果越接近真实分割边界, 分割精度更高.

3.3 实验设置

本文在 PyTorch 框架^[36]上进行实验,所有实验均 在一台配备 RTX 4090GPU (25.2 GB 显存)、16 核 AMD EPYC 9354 处理器、60.1 GB 内存及 751.6 GB 硬盘 的 Ubuntu 20.04 系统服务器上进行.使用的深度学习 框架为 PyTorch 1.12.1,并通过 CUDA 11.6 加速训练过 程.本文利用了 Monai 工具包来预处理医学图像及进 行模型训练的优化.实验所用的所有图像预先进行标 准化处理,将像素强度值归一化到[0,1]范围内,通过非 局部均值滤波进行去噪处理,统一调整至相同尺寸,并 使用数据增强技术,如随机旋转、缩放和水平翻转,以 增强模型的鲁棒性.

实验共进行了 300 轮训练, 初始优化器为 Adam, 初始学习率设置为 1E-4, 然后每 20 个 epoch 减半. 此 外, 模型中引入了 Dropout 层, 丢弃率为 0.3, 以减少过 拟合的风险. 所有实验结果均基于测试集的性能评估. 模型训练过程中, 仅在训练集上进行优化, 而文中所展 示的分割性能实验均来自独立测试集的评估. 测试样 本的标注信息在训练阶段完全不可见, 以模拟实际临 床场景中的泛化能力.

为了验证模型训练的稳定性,本文记录了损失值 随迭代次数的变化情况. 图 2 展示了复合损失L的收敛 曲线.可以看到,复合损失L随着训练轮数的增加逐渐 降低,并在约 150 轮后趋于稳定.这表明,本文提出的 复合损失函数能够有效引导模型学习,且优化过程收 敛性良好.

3.4 参数优化

为了使模型能够根据训练数据自适应调整,以更 好地捕捉医学图像的局部细节与全局特性,并提高分 割的准确性与鲁棒性,高斯测地线距离编码中的衰减 参数 σ ,以及混合核函数高斯过程分类中的参数 α_1 、 α₂、τ、ℓ,均通过端到端的方式从训练数据中自动学 习.训练开始前,所有参数会被赋予合理的默认值作为 初始状态.而后,参数值会在训练过程中通过反向传播 不断更新,最终收敛至最优值,从而确保模型的最佳性 能.各参数初始默认值与最终收敛结果如表 2 所示.

表 2 各参数初始值与优化结果

类别 σ α_1 α_2 τ	?
初始值 1.0 0.5 0.2 1.0 2	0
优化值 0.9 0.6 0.4 0.8 1	8

为了进一步验证自适应优化参数的优越性,我们 将采用自适应优化参数的模型与采用固定参数的模型 在 Spleen 数据集与 Colon 数据集上进行直观的性能对 比.实验结果如表 3 所示.结果表明,与固定参数设置 相比,自适应优化后的参数能够更好地适应图像的复 杂结构和噪声干扰,从而提升分割精度.

农5 多效阳阳阳冲快至日阳冲化						
数据集	参数设置	<i>Dice</i> (%)	ASSD (pix)			
Spleen	固定参数	94.75±2.57	1.73±0.62			
	优化参数	96.86±2.34	1.68 ± 0.72			
Colon	固定参数	78.94±2.83	4.24±1.95			
	优化参数	82.27±3.27	3.12±1.07			

表 3 参数优化前后模型性能对比

3.5 模型对比

为了验证本文方法的有效性,本文与现有的多种 交互式分割方法以及自动分割方法在 MSD 数据集的 4 个子集上进行了对比.

3.5.1 对比模型概述

对比模型选取 6 种交互式分割方法 (DEXTR^[11]、 InterCNN^[12]、DeepIGeoS^[10]、BS-IRIS^[13]、MIDeep-Seg^[14]、TIS^[15]) 以及 1 种自动分割方法 (nnU-Net^[37]). 对以上模型的说明如下.

(1) DEXTR^[11]: deep extreme cut (DEXTR) 将用户

提供的矩形框选编码为欧几里得距离图作为软约束输入,结合卷积编码-解码网络进行端到端训练,并通过 条件随机场解决重叠问题.

(2) InterCNN^[12]: 在自动分割方法基础上训练卷积 神经网络, 不限于二分类任务, 能通过模拟真实用户的 迭代交互提高编辑性能.

(3) DeepIGeoS^[10]:通过一个单独的 CNN 结构来改进已获取的自动分割结果,利用测地线距离变换将用户输入与 CNN 融合,并通过保留分辨率的网络和条件随机场 (CRF)进一步细化分割.

(4) BS-IRIS^[13]: 将交互式图像分割建模为马尔可 夫决策过程 (MDP), 利用强化学习 (RL) 迭代优化, 采 用多代理强化学习共享体素级策略, 同时引入边界感 知奖励机制, 从而在用户交互提示的基础上高效生成 高质量分割掩码.

(5) MIDeepSeg^[14]:通过使用指数化测地线距离编码用户提供的内部边缘点,结合少量用户点击进行信息融合,实现对新见和未见过对象的高效交互式分割.

(6) TIS^[15]: 基于 Transformer 架构, 将用户点击的 像素与具有相似特征的像素进行分组来细化自动分割 结果, 支持同时对多个类别的分割掩码进行细化编辑.

(7) nnU-Net^[37]: 一种基于深度学习的自动化分割 方法, 能够根据不同任务自动配置预处理、网络架 构、训练和后处理步骤.

3.5.2 整体性能对比

我们在 MSD 数据集中 4 个子集的 5 项分割任务 上对本文方法以及7种对比方法的整体性能进行了比 较,实验结果如表4和图3所示.表4量化对比了 MSD 上 4 个子集的 5 项分割任务上各模型分割性能, 加粗字体表示最优分割精度.图3直观展示了各方法 的最终分割效果.可以看出,在 MSD 上 4 个子集的 5项分割任务上,本文方法在 Dice 系数和 ASSD 值方 面均表现优异, 尤其是在 Lung 子集和 Pancreas 子集 的 Pancreas tumour 分割任务中,本文方法的 Dice 系数 分别达到了 87.33% 和 83.31%, 显著优于其他对比方 法. 此外, 本文方法在 ASSD 值上也保持较低水平, 体 现了其在分割精度与边界误差之间的良好平衡.例如, 在 Pancreas 子集的 Pancreas parenchyma 分割任务和 Colon 子集的分割任务中,本文方法的 ASSD 值分别为 1.96 和 3.12, 均优于大多数对比方法. 相比于较为常规 的分割任务 (如 Spleen), 本文方法在复杂分割任务 (如 Pancreas tumour 和 Colon) 中的表现尤为出色, 相较于 其他对比方法, Dice 系数和 ASSD 值均有显著提升. 这 表明我们提出的基于高斯测地线距离编码和混合高斯

Ē

过程分类的交互式分割方法,能够有效捕捉用户交互 提示信息,进而实现精准分割,尤其在应对复杂分割任 务时展现出明显的优势.

攴4 所用致据集上谷榠型分割性	能
-----------------	---

	Lung -		Pancreas			Spleen		Colon		
Method			Pancreas parenchyma		Pancreas tumour		spicen		Colon	
	Dice (%)	ASSD (pix)	Dice (%)	ASSD (pix)	Dice (%)	ASSD (pix)	Dice (%)	ASSD (pix)	Dice (%)	ASSD (pix)
nnU-Net	64.09	4.86	82.16	3.19	49.34	8.42	77.38	3.37	44.84	8.94
DEXTR	82.06 ± 1.96	2.84±1.24	83.43±3.14	2.26±1.31	74.31±2.43	3.52±1.19	94.18±3.25	2.67±1.36	69.27±2.54	4.97±2.16
InterCNN	80.07 ± 2.65	2.98 ± 1.19	82.31±3.28	2.31±1.12	74.17±2.91	3.92 ± 1.45	95.18±4.70	1.23 ± 0.39	69.58±2.97	4.77±1.79
DeepIGeoS	81.74±1.72	3.16±1.41	82.77±1.51	2.15 ± 0.48	75.36±2.60	4.04 ± 2.36	96.39±2.22	1.58 ± 1.24	70.61±2.46	4.53 ± 2.49
BS-IRIS	81.67±2.14	3.31±1.68	85.16±1.34	2.64 ± 1.04	76.49 ± 2.48	2.97±1.56	95.13±3.34	$1.94{\pm}0.48$	71.27±1.82	4.38±1.91
MIDeepSeg	82.31±3.58	2.92±1.57	84.69±4.03	$2.04{\pm}0.87$	70.34±4.36	3.61±2.07	96.93±1.43	1.18 ± 0.44	71.89±3.09	4.17±2.14
TIS	85.07±1.55	2.49 ± 0.44	87.72±1.28	1.92±0.59	77.91±2.07	$2.94{\pm}1.64$	95.11±2.75	1.57±0.75	76.03±1.68	3.92 ± 1.58
Ours	87.33±2.38	2.31±0.73	89.84±2.04	1.96 ± 0.67	83.31±2.49	2.87±1.36	96.86±2.34	1.68 ± 0.72	82.27±3.27	3.12±1.07

图 3 所用数据集上各模型分割性能的可视化

3.5.3 迭代性能对比

在交互式分割任务中,随着用户点击数量的增加,分割结果通常会逐步得到改进.为了验证本文模型的迭代优化效果,我们在 Pancreas 子集的 Pancreas parenchyma 和 Pancreas tumour 两项分割任务上进行了同一交互序列下不同分割方法的迭代性能对比. 实验结果如图 4 所示,随着点击标注数量的增加,本文提出的方法在 Dice 系数方面显示出了稳定的性能提升,明显优于其他对比方法.这一趋势表明,我们的方法能够有效利用用户的交互信息,在每轮点击中逐步细化分割边界,从而在多次交互后实现更高的分割精度.这种持续的性能提升反映了方法在处

理复杂医学图像时的优势,特别是在细节捕捉和边 界定义方面.

3.5.4 编码性能对比

同时,为了探究本文在交互编码部分提出的高斯 测地线距离编码方法的有效性,本文将其与欧几里得 距离变换(Euclidean distance variation, EDV)、高斯热 图(Gaussian heatmap, GH)以及测地线距离变换(GEO) 进行比较.对比实验在 MSD 数据集的 Spleen 和 Colon 子集上进行,所有实验均采用相同的用户混合点击交 互,其他模块保持一致使用本文方法.

实验结果如表 5 所示,可以看出,在两个数据子集上,本文提出的高斯测地线距离编码方法在 Dice 系数

和 ASSD 指标上均取得了优于其他编码方法的表现, 验证了其在交互编码中的有效性和优越性. 特别是在 边界精度要求较高的任务中,高斯测地线距离编码表 现出显著的优势.

图 4 同一交互序列下不同分割方法的迭代性能对比

表 5 各编码方法在 Spleen 和 Colon 数据集上的定量比较

Method -	Spl	een	Colon		
	Dice (%)	ASSD (pix)	Dice (%)	ASSD (pix)	
EDV	87.42±6.54	3.13±1.76	74.56±5.98	4.02±2.30	
GH	88.47±3.27	2.34±1.42	75.91±6.18	3.86±2.43	
GEO	94.17±6.23	2.21±0.91	80.17±6.38	3.37±2.13	
Ours	96.86±2.34	1.68±0.72	82.27±3.27	3.12±1.07	

3.6 消融实验

为了充分验证本文提出的方法中各个模块的必要 性和有效性,本文进行了详细的消融实验,通过逐步移 除或替换模型中的关键模块,评估各模块对整体性能 的贡献,具体设计如下.

基线模型 (完整方法):包括融合点击交互、高斯 测地线距离编码、特征提取模块和基于混合核函数高 斯过程分类的像素分类模块.

消融实验 1: 替换混合点击交互设计. 该实验中, 移除"近中心点+外边缘点"的交互形式, 替换为传统的"前景点+背景点"交互. 通过对比性能差异, 评估融合交互设计的贡献.

消融实验 2: 移除高斯测地线距离编码. 在此实验 中,不对用户交互信息进行任何编码操作,直接与待分 割图像进行级联,输入特征提取网络,以验证高斯测地 线距离编码对用户交互信息的捕捉效果.

消融实验 3: 替换基于混合核函数高斯过程分类的 像素分类模块. 该实验将混合核函数高斯过程分类器 替换为常见的 CNN 分类器, 评估高斯过程分类器在像 素分类任务中的表现优势.

表 6 展示了在 Spleen 和 Colon 两个子集上基线模

型及3个消融实验的 Dice 系数和 ASSD 值对比结果. 对比基线模型, 去除模块后的3个消融实验在分割准 确性上都有明显下降.

表 6	各版本消融模型在 Spleen 和 Colon 数据集上的
	定量比较

模型版本	Spl	een	Colon		
	Dice (%)	ASSD (pix)	Dice (%)	ASSD (pix)	
消融实验1	94.17±4.27	2.41±1.39	77.45±6.22	3.78±2.47	
消融实验2	90.12±5.47	3.15±1.43	74.03±5.47	4.06±2.13	
消融实验3	91.58±3.98	2.54±1.45	76.78±5.84	3.63±2.34	
基线模型	96.86±2.34	1.68±0.72	82.27±3.27	3.12±1.07	

消融实验1中,替换"近中心点+外边缘点"的混合 点击交互设计为传统"前景点+背景点"后, Dice 系数略 有降低,但ASSD值增加显著,尤其在Colon数据集中, Dice 系数降低 4.82%, ASSD 增加了 0.66, 表明在复杂 分割任务中,本文提出的混合交互设计更有助于提高 分割精度和边界准确性,而传统交互形式在复杂分割 任务中的表现则较为不足.其次,消融实验2中移除高 斯测地线距离编码导致了最为显著的性能下降.在 Spleen 数据集中, Dice 系数下降了 6.74%, ASSD 增加 了 1.47 pix. 而在 Colon 数据集中, Dice 系数下降了 8.24%, ASSD 增加了 0.94 pix. 表明了高斯测地线距离 编码在有效捕捉用户交互中的聚焦指示信息和增强边 界精度方面起到关键作用. 在消融实验 3 中, Spleen 数 据集的 Dice 下降 5.28%, ASSD 增加 0.86 pix, 而 Colon 数据集的 Dice 下降 5.49%, ASSD 增加 0.51 pix. 这充 分说明,像素分类模块通过高斯过程分类引入用户交 互信息,使模型拥有更强的稳定性和边界处理能力.

综合上述实验结果,本文提出的混合点击交互设 计、高斯测地线距离编码方法以及基于混合核函数高 斯过程分类的像素分类模块,在常规和复杂分割任务 中,对于整体分割精度及边界精度的提升均发挥了重 要作用.

4 结论与展望

深度学习在医学图像交互式分割领域得到了广泛 应用,但现有的交互设计与编码方法尚未完全满足医 学图像分割的需求,且在像素分类过程中未能充分利 用用户的交互信息,导致模型性能受到限制.为解决这 一问题,本文提出了一种基于改良测地线距离编码和 混合高斯过程分类的医学图像交互式分割方法. 通过 高斯衰减函数对测地线距离进行加权,减弱图像噪声 的干扰, 增强交互编码的鲁棒性和准确性, 并结合混合 点击交互设计,精准定位用户关注的区域.在像素分类 中,利用高斯过程分类器结合混合核函数捕捉医学图 像中不同尺度的特征,进一步提升分类的准确性,并为 模型提供一定的可解释性. 为验证本文方法的有效性, 我们在 MSD 数据集的 4 个子集的 5 项分割任务上进 行了广泛实验,取得了优异结果.未来,我们将致力于 减少医学图像分割模型对训练样本量的依赖,优化交 互效率和模型的普适性,探索更多样化的交互设计,以 提升模型在更具挑战性的医学图像分割任务中的表现.

参考文献

- Olabarriaga SD, Smeulders AWM. Interaction in the segmentation of medical images: A survey. Medical Image Analysis, 2001, 5(2): 127–142. [doi: 10.1016/S1361-8415 (00)00041-4]
- 2 Zhao F, Xie XH. An overview on interactive medical image segmentation. Annals of the BMVA, 2013, 2013(7): 1–22.
- 3 刘宇,陈胜. 医学图像分割方法综述. 电子科技, 2017, 30(8): 169-172.
- 4 Shelhamer E, Long J, Darrell T, *et al.* Fully convolutional networks for semantic segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640–651. [doi: 10.1109/TPAMI.2016.2572683]
- 5 Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation. Proceedings of the 18th International Conference on Medical Image Computing and Computer-assisted Intervention. Munich: Springer, 2015. 234–241.

- 6 段杰, 崔志明, 沈艺, 等. 一种改进 FCN 的肝脏肿瘤 CT 图 像分割方法. 图学学报, 2020, 41(1): 100-107.
- 7 周涛, 董雅丽, 刘珊, 等. 用于肺部肿瘤图像分割的跨模态 多编码混合注意力 U-Net. 光子学报, 2022, 51(4): 0410006. [doi: 10.3788/gzxb20225104.0410006]
- 8 Neelam B, Palakayala PK, Mbangweta K, *et al.* FCN based deep learning architecture for medical image segmentation. Proceedings of the 2nd International Conference on Edge Computing and Applications (ICECAA). Namakkal: IEEE, 2023. 556–562. [doi: 10.1109/ICECAA58104.2023. 10212108]
- 9 陈成, 张正, 肖迪. 基于改进 U-Net 网络的新冠病毒 CT 图 像分割. 计算机仿真, 2023, 40(7): 154–158, 452. [doi: 10. 3969/j.issn.1006-9348.2023.07.028]
- 10 Wang GT, Zuluaga MA, Li WQ, et al. DeepIGeoS: A deep interactive geodesic framework for medical image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(7): 1559–1572. [doi: 10. 1109/TPAMI.2018.2840695]
- 11 Xu N, Price BL, Cohen S, *et al.* Deep grabut for object selection. arXiv:1707.00243, 2017.
- 12 Bredell G, Tanner C, Konukoglu E. Iterative interaction training for segmentation editing networks. Proceedings of the 9th International Workshop on Machine Learning in Medical Imaging. Granada: Springer, 2018. 363–370. [doi: 10.1007/978-3-030-00919-9 42]
- 13 Ma CF, Xu QS, Wang XF, et al. Boundary-aware supervoxel-level iteratively refined interactive 3D image segmentation with multi-agent reinforcement learning. IEEE Transactions on Medical Imaging, 2021, 40(10): 2563–2574. [doi: 10.1109/TMI.2020.3048477]
- 14 Luo XD, Wang GT, Song T, *et al.* MIDeepSeg: Minimally interactive segmentation of unseen objects from medical images using deep learning. Medical Image Analysis, 2021, 72: 102102. [doi: 10.1016/j.media.2021.102102]
- 15 Liu WT, Ma CF, Yang YH, *et al.* Transforming the interactive segmentation for medical imaging. Proceedings of the 25th International Conference on Medical Image Computing and Computer-assisted Intervention. Singapore: Springer, 2022. 704–713. [doi: 10.1007/978-3-031-16440-8_67]
- 16 Grady L. Random walks for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(11): 1768–1783. [doi: 10.1109/TPAMI.2006.233]
- 17 Yushkevich PA, Piven J, Hazlett HC, *et al.* User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability.

NeuroImage, 2006, 31(3): 1116–1128. [doi: 10.1016/j. neuroimage.2006.01.015]

- 18 Criminisi A, Sharp T, Blake A. GeoS: Geodesic image segmentation. Proceedings of the 10th European Conference on Computer Vision. Marseille: Springer, 2008. 99–112. [doi: 10.1007/978-3-540-88682-2_9]
- 19 Wang GT, Zuluaga MA, Pratt R, *et al.* Dynamically balanced online random forests for interactive scribble-based segmentation. Proceedings of the 19th International Conference on Medical Image Computing and Computer-Assisted Intervention. Athens: Springer, 2016. 352–360. [doi: 10.1007/978-3-319-46723-8 41]
- 20 Wang GT, Zuluaga MA, Pratt R, et al. Slic-Seg: A minimally interactive segmentation of the placenta from sparse and motion-corrupted fetal MRI in multiple views. Medical Image Analysis, 2016, 34: 137–147. [doi: 10.1016/j.media. 2016.04.009]
- 21 Rother C, Kolmogorov V, Blake A. "GrabCut"—Interactive foreground extraction using iterated graph cuts. ACM Transactions on Graphics, 2004, 23(3): 309–314. [doi: 10. 1145/1015706.1015720]
- 22 Rajchl M, Lee MCH, Oktay O, *et al.* DeepCut: Object segmentation from bounding box annotations using convolutional neural networks. IEEE Transactions on Medical Imaging, 2017, 36(2): 674–683. [doi: 10.1109/TMI. 2016.2621185]
- 23 Maninis KK, Caelles S, Pont-Tuset J, et al. Deep extreme cut: From extreme points to object segmentation. Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018. 616–625.
- 24 Wang GT, Li WQ, Zuluaga MA, *et al.* Interactive medical image segmentation using deep learning with image-specific fine-tuning. IEEE Transactions on Medical Imaging, 2018, 37(7): 1562–1573. [doi: 10.1109/TMI.2018.2791721]
- 25 Hu Y, Soltoggio A, Lock R, *et al.* A fully convolutional twostream fusion network for interactive image segmentation. Neural Networks, 2019, 109: 31–42. [doi: 10.1016/j.neunet. 2018.10.009]
- 26 Koohbanani NA, Jahanifar M, Tajeddin NZ, *et al.* Leveraging transfer learning for segmenting lesions and their attributes in dermoscopy images. arXiv:1809.10243, 2018.
- 27 Sakinis T, Milletari F, Roth H, *et al.* Interactive segmentation of medical images through fully convolutional neural networks. arXiv:1903.08205, 2019.
- 28 Li ZW, Chen QF, Koltun V. Interactive image segmentation with latent diversity. Proceedings of the 2018 IEEE/CVF

Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018. 577–585. [doi: 10.1109/CVPR. 2018.00067]

- 29 Xu N, Price B, Cohen S, *et al.* Deep interactive object selection. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas IEEE, 2016. 373–381. [doi: 10.1109/CVPR.2016.47]
- 30 Wang Z, Acuna D, Ling H, *et al.* Object instance annotation with deep extreme level set evolution. Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019. 7492–7500. [doi: 10. 1109/CVPR.2019.00768]
- 31 Khan S, Shahin AH, Villafruela J, et al. Extreme points derived confidence map as a cue for class-agnostic interactive segmentation using deep neural network. Proceedings of the 22nd International Conference on Medical Image Computing and Computer Assisted Intervention. Shenzhen: Springer, 2019. 66–73. [doi: 10.1007/978-3-030-32245-8_8]
- 32 Chen LC, Papandreou G, Kokkinos I, *et al.* Semantic image segmentation with deep convolutional nets and fully connected crfs. arXiv:1412.7062, 2014.
- 33 Zhao HS, Shi JP, Qi XJ, et al. Pyramid scene parsing network. Proceedings of the 2017 IEEE Conference on Vision and Pattern Recognition. Honolulu: IEEE, 2017. 6230–6239. [doi: 10.1109/CVPR.2017.660]
- 34 Badrinarayanan V, Kendall A, Cipolla R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481–2495. [doi: 10. 1109/TPAMI.2016.2644615]
- 35 Zhou MH, Wang H, Zhao Q, et al. Interactive segmentation as Gaussian process classification. Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023. 19488–19497.
- 36 Paszke A, Gross S, Massa F, *et al.* PyTorch: An imperative style, high-performance deep learning library. Proceedings of the 33rd International Conference on Neural Information Processing Systems. Vancouver: Curran Associates Inc., 2019. 721.
- 37 Isensee F, Jaeger PF, Kohl SAA, *et al.* nnU-Net: A selfconfiguring method for deep learning-based biomedical image segmentation. Nature Methods, 2021, 18(2): 203–211. [doi: 10.1038/s41592-020-01008-z]

(校对责编: 王欣欣)