E-mail: csa@iscas.ac.cn http://www.c-s-a.org.cn Tel: +86-10-62661041

基于时频域信息融合和多尺度对抗的轨迹预测①

施黄凯¹, 王彩玲¹, 刘华军²

¹(南京邮电大学 自动化学院、人工智能学院, 南京 210023) ²(南京理工大学 计算机科学与工程学院, 南京 210094) 通信作者: 王彩玲, E-mail: wangcl@njupt.edu.cn

摘 要:目前已有许多工作将 Transformer 运用到时间序列预测相关任务. 然而,相比其他时间序列,运动轨迹数据 存在运动学的不确定性,没有明显的周期特性.为了降低噪声干扰,增强趋势建模,本文在 Transformer 架构的基础 上,提出一种基于时频域信息融合和多尺度对抗训练的目标轨迹预测方法. 将小波分解嵌入网络模型,实现时频域 自适应滤波;并与时域注意力进行融合,能够更有效地对观测轨迹的长期趋势特性进行编码.并设计了一个全卷积 判别器,通过对抗训练学习序列的多尺度短期微运动表示,进一步提高预测精度.本文建立了一个包括2维船舶轨 迹和3维飞行器轨迹的轨迹预测数据集 DT 作为基准,并在此与 Transformer、LogTrans、Informer 等模型进行对 比实验.实验结果表明本文的方法在中长期轨迹预测任务上优于其他模型.

关键词:轨迹预测;时序预测;小波分解;自注意力;对抗训练

引用格式: 施黄凯,王彩玲,刘华军.基于时频域信息融合和多尺度对抗的轨迹预测.计算机系统应用,2023,32(12):268-275. http://www.c-sa.org.cn/1003-3254/9324.html

Trajectory Prediction Based on Time-frequency Domain Information Fusion and Multi-scale Adversary

SHI Huang-Kai¹, WANG Cai-Ling¹, LIU Hua-Jun²

¹(College of Automation & College of Artificial Intelligence, Nanjing University of Posts and Telecommunications, Nanjing 210023, China)

²(School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China)

Abstract: Many studies apply Transformer to time series prediction tasks. However, compared with other time series, motion trajectory data has kinematic uncertainty without obvious periodicity. To reduce noise interference and enhance trend modeling, this study proposes a target trajectory prediction method based on time-frequency domain information fusion and multi-scale adversarial training based on Transformer architecture. The wavelet decomposition is embedded into the network model to realize the adaptive filtering in the time-frequency domain, and then time-domain attention is integrated to encode the long-term trend characteristics of the observed trajectory more effectively. Meanwhile, the study designs a full convolution discriminator to further improve the prediction accuracy by learning multi-scale short-term micro motion representation of the sequence through adversarial training. A trajectory prediction dataset DT including 2D ship trajectory and 3D aircraft trajectory is established as a benchmark, and comparative experiments with Transformer, LogTrans, Informer, and other models are conducted. Experiment results show that the proposed method is superior to other models in the tasks of medium and long-term trajectory prediction.

Key words: trajectory prediction; time series prediction; wavelet decomposition; self-attention; adversarial training

① 收稿时间: 2023-06-04; 修改时间: 2023-07-03; 采用时间: 2023-07-12; csa 在线出版时间: 2023-10-19 CNKI 网络首发时间: 2023-10-20

²⁶⁸ 研究开发 Research and Development

轨迹预测任务需要从带噪声的观测中估计目标真 实的运动状态,推理出目标未来的运动轨迹^[1].移动目 标轨迹预测在智能交通^[2]、自动驾驶^[3]、飞行器拦 截^[4]等领域具有巨大的研究前景和应用价值.早期的轨 迹预测研究大多先通过归一化、滑动平均^[5]、小波分 解^[6]等数据预处理方法整合提取数据的特征,帮助模型 训练;再使用一些概率统计方法进行预测.如差分自回 归移动平均模型^[7]、卡尔曼滤波器^[8]、隐马尔科夫模 型^[9],贝叶斯网络^[10]等.然而,这样的做法经常会导致预 测效果取决于预处理效果的问题,淡化了模型本身的 作用,使模型缺乏普适性^[11].此外,在面对复杂、长期 的非线性轨迹时,传统的模型无法对点迹间的相互依 赖进行有效建模.

对轨迹序列的预测任务可以看作是对多变量时间 序列的处理.基于神经网络的许多方法已运用于时间 序列预测领域.1986年,Elman等人提出循环神经网 络 (RNN),通过递归推理处理序列,学习序列的非线性 特征^[12].1997年,Hochreiter等人提出长短期记忆力网 络 (LSTM),在隐藏层中使用门机制,记忆门记忆有效 信息,遗忘门遗忘不重要的信息,缓解 RNN 梯度消失 和爆炸的问题,并能处理较长的依赖^[13].但在处理时间 跨度更大的任务时,LSTM 难以保持长期的依赖,随着 序列的增加,梯度仍会消失.

Cho 等人^[14]提出了 Seq2Seq 结构, 通过编码器 (encoder)将输入序列的上下文特征编码为隐藏状态向 量 c, 解码器 (Decoder) 将隐藏状态向量 c 解码, 预测目 标序列, 使模型可以应对输入序列和输出序列不等长 的情况. DeepAR^[15]将 Seq2Seq 架构与 LSTM 结合, 使 用两个 LSTM 模块分别作为网络的编码器和解码器, 进行时间序列预测;但递归式模型的向量 c 只能由输 入序列中最近一个字符的隐藏状态的非线性变换得到, 先前的信息将随着序列长度增加而减少,难以包含全 局的上下文信息. Transformer 引入自注意力 (selfattention) 机制进行编码和解码. 评估点迹间的相关性, 并以此来对上下文分配注意力,进行全局信息建模[16], 但预测时编码器的递归推理会造成误差累积,随着序 列变长,精度急剧下降. Informer^[17]开创性地使用生成 式的推理过程进行序列预测,一次生成所有的预测轨 迹. 解决了误差累积问题, 加快了模型训练的速度, 更 适合长序列的预测.

目前已经有许多工作将生成对抗网络 (GAN) 运

用到序列预测任务中, ForGAN^[18]将历史轨迹数据作为标签, 通过输入噪声拟合真实未来轨迹的分布, 形成一个 Conditional GAN^[19]. 但由基于 RNN 的网络构成的 生成器和判别器难以学习非线性序列之间的复杂模式. Wu 等人^[20]将 Transformer 与 GAN 相结合, 将 Transformer 作为生成器生成预测轨迹, 判别器进一步拟合 真实轨迹的分布, 以期减小累积误差. 然而, 全连接网 络构成的判别器提取特征能力有限, 难以向生成器提 供有效的后验信息和稳定的梯度反馈.

目前移动目标轨迹预测领域的热点主要集中在行 人和车辆等交通网络中的多变量轨迹预测.除了目标 的历史轨迹外,研究很大程度上依靠可观察到的外部 环境激励信息. Shafiee 等人^[21]通过对道路的几何场景 等静态物理信息以及其他行人和车辆的动态交互信息 进行建模来辅助预测, Wu 等人^[11]利用滑动平均方法强 化时间序列的周期性以提升预测精度. 将外部因素作 为协变量和轨迹信息一同输入模型,期望从多维度原 始数据端到端地学习目标的运动意图以提升轨迹预测 的效果. 但对于船舶等二维移动目标和飞行器等三维 移动目标来说,天气、洋流、磁场等外部信息难以进 行建模,在时序信息中往往只能表现为状态噪声;同时 还受到雷达探测的观测噪声影响,使观测轨迹失真,难 以捕捉运动意图. 现有的模型难以在这些任务上取得 良好的效果, 而对此的研究又是十分必要的. 因此, 我 们通过动力学建模和仿真,建立了一个 DT 数据集.作 为上述单变量轨迹预测问题训练和验证的新基准,并 在此验证了本文模型的效果.

本文主要的贡献可以概括如下.

(1)提出时频域信息融合编码器,在两个通道分别 建模输入轨迹的时域信息和时频域信息,将小波分解 嵌入模型中,配合频域自注意力提取低频趋势特性,与 时域上下文依赖融合,增强模型建模长期趋势的能力.

(2)使用一种多尺度卷积判别器网络,学习捕捉序 列之间的多尺度局部动态特征,通过对抗训练拟合真 实轨迹,提升序列级精度.

(3) 在长期轨迹预测数据集 DT 上与相关的先进算 法进行比较, 取得了最好的效果. 验证了模型的有效性.

1 相关工作

1.1 离散小波变换

小波变换是序列预测领域最常见的数据分解方法

Research and Development 研究开发 269

之一. 通过选取恰当的小波基函数, 小波变换可以使信号在时间域和频率域上都体现出良好的局部特性, 从而较好地从信号中获取到信息, 克服 Fourier 变换不能处理序列中突变和非平稳信息的缺点^[22].

小波变换有两个变量:尺度因子a和平移因子b.尺 度因子a控制小波函数的伸缩,平移因子b控制小波函 数的平移.尺度是频率的倒数,平移对应于时间.一般 来说,对于采样轨迹这种离散信号可以采用离散小波 变换,将a、b离散化为式(1)的形式.

$$a = a_0^j, \ b = k a_0^j b_0 \tag{1}$$

其中, a₀ > 0, b₀ ∈ R, ∀j,k ∈ Z, 小波基可以表示为式 (2).

$$\psi_{j,k}(t) = a^{-\frac{1}{2}}\psi(a_0^{-j}t - kb_0) \tag{2}$$

小波变换的完整公式如式 (3) 所示.

$$W_f(j,k) = a^{-\frac{1}{2}} \int f(t) * \overline{\psi_{j,k}(t)} dt$$
(3)

通过小波分解,可以得到一个趋势序列和一个细 节序列.具体分解公式如式 (4) 和式 (5) 所示.

$$a_{j+1} = Ga_j, \ j = 1, 2, \cdots, N$$
 (4)

$$d_{j+1} = Ha_j, \ j = 1, 2, \cdots, N \tag{5}$$

其中, G, H分别为低通、高通滤波器, a_j, d_j分别为趋势 序列和细节序列. 在每次分解过程中, 得到的高频信息 将被滤除, 低频信息则用于下一步的分解.

1.2 Transformer

Transformer 将自注意机制与 Seq2Seq 架构相结 合. 自注意机制可以根据关联程度向序列中的其他点 分配注意力,加强网络的特征提取能力. 具体地,将输 入乘以不同的权重矩阵,得到可学习的查询Q,键K和 值V,同时,权重矩阵内分为多个头,各自学习以全面学 习高维信息. 通过Q和K的乘积得到序列各点的相似 度,再通过Softmax赋予各点注意力权重,建模全局上下 文信息,最后的结果如式(6).

$$Attention(Q, K, V) = Softmax\left(\frac{QK^{\mathrm{T}}}{\sqrt{d_k}}\right)V$$
(6)

1.3 生成对抗网络

生成对抗网络由一个生成器 G 和一个判别器 D 组成,生成器接收一个随机噪声z,通过近似实际数 据的分布得到生成数据G(z).判别器接收真值x和输出 G(z),通过最小化交叉熵损失函数,判别器判定输入是 真实分布的概率,数据越真实,概率越接近 1,反之概率

270 研究开发 Research and Development

越接近 0. G 和 D 交替训练构成一个动态的"博弈过程"^[23]. GAN 的损失函数如式 (7) 所示.

$$\arg \min_{G} \max_{D} E_{x \sim p_{data}(x)} [\log D(x)] + E_{z \sim p_{z}(z)} [\log(1 - D(G(z)))]$$
(7)

其中, pdata(x)是真值序列, pz(z)是噪声序列.

通过对抗训练, G 的生成能力和 D 的判别能力都 会越来越强, 最终 G 足以以假乱真, 达到"纳什均衡"状态, 使网络能够拟合真实数据的分布.

2 本文方法

2.1 整体架构

模型总体为 Seq2Seq 架构, 生成器由改进的 Transformer 构成, 观测序列输入 encoder 后首先进行升维, 将 2 维或 3 维的轨迹提高为 512 维, 提取高维隐藏状 态; 再使用绝对位置编码方式对序列顺序进行编码, 如 式 (8) 所示.

$$\begin{cases} PE_{(pos,2j)} = \sin(pos/(2L)^{\frac{2j}{d}}), \\ PE_{(pos,2j+1)} = \cos(pos/(2L)^{2j/d}), \\ j = 1, 2, \cdots, d/2 \end{cases}$$
(8)

其中, pos为位置指数. 将 Transformer 中的编码器改进 为时频域信息融合模块, 增强趋势信息表征. 解码器只 保留一层, 降低内存开销; 并采用生成式推理方法, 消 除误差累积. 判别器是一个全卷积网络, 通过对抗训练 提升模型对多尺度局部特征的学习能力. 编码器建模 上下文长期趋势; 判别器拟合局部动态特征. 我们的方 法是一种同时表示长、短期轨迹特征的有效方案. 网 络模型的整体结构设计如图 1 所示.

2.2 时频域信息融合模块

编码器分为时域和时频域两个通道^[24]. 时频域通 道做一次时域注意后堆叠 3 个时频域注意模块. 该模 块通过小波分解和自注意力机制建模观测序列的低频 趋势特性. 仅使用序列的频谱可能会导致时域信息的 损失, 因此在另一个通道使用时域注意模块补偿全局 时域序列信息. 最后将双通道信息进行融合, 馈入解码器.

在时域通道中,自注意机制编码时域的全局上下文 信息;前馈神经网络将数据映射到高维,获取更多的隐 藏信息.层归一化有助于网络层的稳定,并起到正则化的 作用.通过残差连接,可以降低模型复杂度,减少过拟合.

一般信号在频域上相对时域更加稀疏,且在高频 部分的大量信息是所谓"噪声".在图像领域,这些噪声 可能是形状的边缘,代表图片重要的细节.但在轨迹预测问题上,噪声往往由观测精度不够或外部环境干扰等原因造成,无法进行预测^[25],轨迹的长期趋势信息则 大部分位于低频.因此,本文在频域通过小波变换分离 轨迹的高低频分量,将每次变换后的高频噪声分量丢 弃,对低频信息做进一步的处理.

与传统"预处理+模型"的模式不同,本文使用 Kymatio 方法^[26],可以将小波分解嵌入神经网络框架之 中,参与反向传播.在得到小波分解下的低频信息后, 在频域运用自注意机制,建模频域特征信息之间的长期依赖,提取表征趋势的信息,实现可学习的自适应滤波^[27],进一步强化低频长期趋势依赖.

为了最大程度地刻画时间序列的不规则信息,时 频域选取具有正交性和紧支撑性的"sym8"小波^[28]进行 离散小波分解,这个过程可以将向量长度减半,有效地 提取出序列内在的趋势信息.经过3层的小波分解-自 注意力级联,舍弃各阶段的高频噪声,得到自适应滤波 后的低频频域特征.

图1 网络结构

最后, $X_{input} \in \mathbb{R}^{L \times d}$ 在时域和频域分别得到输出 $X_{output}^{t} \in \mathbb{R}^{L \times d}$, $X_{output}^{f} \in \mathbb{R}^{L \times d}$. 通过全连接层将频域输 出映射至 $\mathbb{R}^{L \times d}$. 这样, 就可以对张量进行拼接和卷积, 得到融合时频域特征的输出. 如式 (9) 所示.

 $X_{\text{output}} = \text{Conv1d}(Concat(X_{\text{output}}^t, MLP(X_{\text{output}}^f)))$ (9)

2.3 多尺度全卷积判别器

为了进一步提升模型的预测精度,弥补编码器在 短期动态特征建模的欠缺,模型采用生成对抗网络结 构,通过对抗训练进一步拟合真实的轨迹.并且,为了 解决传统判别器中全连接网络提取特征能力有限的问题,将其改进为由全卷积神经网络构成的多尺度判别器^[29],可以有效地提取序列在各个尺度的局部特征信息.

网络结构如图 2 所示,由若干个卷积模块构成,卷 积的步长为 2,卷积核大小从7×7开始,随着网络深度 增加而减小至3×3获取轨迹在不同尺度下的特征表示. 随后进行归一化处理,通过激活函数 ELU(·)增强逼近 能力.最后将多层次的特征进行拼接,得到判别器网络 的最终输出.

Research and Development 研究开发 271

图 2 多尺度卷积判别器

在单一的生成网络之下,模型会因过于拟合趋势 特性而得到钝化、平缓的结果.通过在判别器中与 ground truth 的"动态博弈"过程,网络可以在不受突 变、噪声影响的条件下学习到真实轨迹所具备的局部 动态特征,实现长期趋势与短期特征的均衡表征.

2.4 损失函数

为了能将基于 Transformer 的生成器与对抗训练 有效结合,我们使用了内容损失*l*_G和对抗损失*l*_D来提 升模型的预测和估计性能.其中,内容损失函数使用轨 迹预测问题最常用的均方误差;对抗损失使用多尺度 特征的平均绝对误差.内容损失函数如式(10)所示.

$$l_{G}(\hat{Y}, Y) = \frac{\sum_{l=1}^{\Delta L} \sum_{i=1}^{m} (\hat{Y}_{l}^{i} - Y_{l}^{i})^{2}}{\Delta L \times m}$$
(10)

其中, Y为真实轨迹, $\hat{Y} \in \mathbb{R}^{\Delta L \times M}$ 为预测轨迹, ΔL 为预测 轨迹长度, m为其空间维数.

多尺度判别器网络的对抗损失函数如式 (11) 所 定义.

$$\min_{\theta_G} \max_{\theta_D} l_D(\theta_G, \theta_D) = \frac{1}{N} \sum_{n=1}^N l_{mae}(f_D(G(x_n), f_D(y_n)))$$
(11)

其中, mae为平均绝对误差, yn是第n条真实轨迹, G(xn) 是生成器网络输出的预测轨迹, f_D(x)表示从轨迹x中 提取的多尺度特征.具体地,函数l_{mae}定义为式(12).

$$l_{mae}(f_D(G(x_n), f_D(y_n)) = \frac{1}{L} \sum_{i=1}^{L} \|f_D^i(G(x_n)) - f_D^i(y_n)\|_1$$
(12)

其中, *L*为判别器网络中总的卷积层数, *fⁱ_D*(y_n)是轨迹 y_n在判别器网络第*i*个卷积后提取的特征. 最后, 网络 的损失函数*l*如式 (13) 所示.

$$l = l_G + \lambda l_D \tag{13}$$

272 研究开发 Research and Development

在训练过程中,采用两个网络交替训练的策略.首 先训练生成器,在固定判别网络梯度的情况下,优化生 成器网络,使得生成器输出的序列能够在多尺度上拟 合真实轨迹,即最小化网络总的损失.接着训练判别器, 在固定生成器对其的输入的情况下,优化判别器网络, 增强网络对两种轨迹的特征提取和区分能力,即最大 化对抗损失.不断重复上述过程,随着训练的进行,生 成器和判别器网络都变得越来越强大.多次训练后,判 别器能够识别真假轨迹的细微差异,生成器能够很好 地学习拟合轨迹的多尺度特征.

3 实验与分析

通过运动学建模和仿真,我们建立并公开了DT 数据集,作为轨迹预测任务的新基准.

数据集包括二维和三维空间的模拟轨迹,每个空间包含 100 000 条轨迹的观测值和真实值,长度均为 500 个点.将数据集按照 8:1:1 的比例进行训练、验证 和测试.

在训练阶段, 使用 Adam 作为优化器, 初始学习率 设置为 1E-4, 每 2 个 epoch 衰减一半, batchsize 设置 为 32, 最终实验结果来自多次实验的平均值. 所有实验 都在 GTX TITAN 12 GB GPU 上运行.

在轨迹预测任务中,对我们的方法进行了验证.基 准模型包括以下序列预测问题的先进方法,RNN、LSTM、 Transformer、LogTrans^[30]、Performer^[31]和 Informer.由 于实验所需预测的轨迹较长,递归式推理方法会导致 内存爆炸,无法进行实验,本文的所有模型均采用 Informer 所使用的生成式推理方法.

3.1 轨迹预测任务

轨迹预测任务需要根据观测到的历史轨迹,推理 出目标后续的运动状态.轨迹预测可分为中期预测和 长期预测,受到误差传播、非线性动力学的复杂模式 和不确定性的影响,长期预测更为困难.在2D和3D 的数据集上,我们各进行中期和长期的预测实验.具体 地,中期预测通过400个观测点推测未来100个点,长 期预测通过200个观测点推测未来300个点.实验比 较轨迹预测领域传统的评价指标平均位移误差 *ADE* 和终点位移误差 *FDE*^[32].*ADE* 表示所有轨迹的预测点 和实际点间的均方误差,*FDE* 表示预测的轨迹目的地 和真实目的地的距离,两个指标越小,说明预测的效果 越好. 计算公式如式 (14) 和式 (15) 所示, 其中, N为轨 迹条数, L2范数为平均欧氏距离.

$$ADE = \frac{\sum_{n=1}^{N} \sum_{l=1}^{\Delta L} ||\hat{Y}_{l}^{n} - Y_{l}^{n}||_{2}}{N \times \Delta L}$$
(14)

$$FDE = \frac{\sum_{n=1}^{N} ||\hat{Y}_{l}^{n} - Y_{l}^{n}||_{2}}{N}, \ l = \Delta L$$
(15)

2D 数据集上的实验结果如表1所示.可以看出, 在长期和中期的预测任务中,我们的方法均取得了最 好的效果. 在长期预测中, ADE 提升了 4.1%-18.5%, FDE 提升了 17.5%-46%; 在中期预测中, ADE 提升了 8.1%-55%, FDE 提升了 16%-54.5%.

3D 数据集上的预测结果在表 2 中列出, 我们的方 法同样取得了良好的效果.在长期预测中, ADE 提升 了 2.4%-15.8%, FDE 提升了 11.7%-37%; 在中期预测 中, ADE 提升了 9.2%-48.4%, FDE 提升了 15.9%-54.5%. 2D 数据集长期预测的可视化结果如图 3 所示. 通

> 125 Observe Ground truth 200 100 Qurs Informer 75 150 LogTrans Performer 50 Observe Ground truth Transformer LSTM 100 25 Qurs Informer RNN 50 0 LogTrans Performer -250 Transformer -50 RNN -50-75 100 0 50 100 150 200 200 300 100 Observe Ground truth 50 Qurs 50 Informer 0 LogTrans 0 Performer Transformer -50-50 LSTM RNN -100-100-150 -150-200-300 -250 -200 -150 -100-500 -60-40-20

> > 图 3 2D 数据集长期轨迹预测效果图

3.2 消融实验

为了分析每个模块对网络模型产生的影响,本文 在 2D 数据集上进行长期轨迹预测消融实验. 变量分别 为频域注意力模块 (frequency domain attention, FDA), 时频域信息融合模块 (time frequency fusion, TFF), 多 尺度判别器模块 (multi scale discriminator, MSD). 将 Transformer 作为基准模型,所有模型同样均采用生成 式推理方法. 消融实验的最终结果如表 3 所示.

Research and Development 研究开发 273

表1 2D 数据集轨迹预测任务

推到	Δ300		Δ100		
快至	$ADE \downarrow$	$FDE \downarrow$	$ADE \downarrow$	$FDE \downarrow$	
Transformer	34.73	26.86	5.79	13.62	
Informer	34.82	25.35	8.8	14.41	
LogTrans	35.55	25.93	8.21	15.31	
Performer	36.14	30.61	6.19	19.59	
LSTM	37.25	29.92	8.61	18.79	
RNN	40.89	38.67	11.83	25.15	
Ours	33.32	20.91	5.32	11.45	

3D 数据集轨迹预测任务

4世 114	Δ300		Δ100	
候型	$ADE \downarrow$	$FDE \downarrow$	$ADE \downarrow$	$FDE \downarrow$
Transformer	45.77	38.12	8.37	19.25
Informer	44.88	35.12	10.38	17.56
LogTrans	44.72	34.67	9.54	18.39
Performer	44.54	39.13	9.99	19.59
LSTM	47.34	39.44	10.9	23.98
RNN	51.72	48.61	14.71	31.59
Ours	43.54	30.62	7.6	15.71

表 3	2D 数据集长期轨迹预测消融实验	
1XJ	2D 奴伯朱氏初机应顶仍旧陬大孤	

模型	FDA	TFF	MSD	ADE↓	FDE↓
Transformer	_	_	_	34.73	26.86
1	\checkmark	_	_	34.22	25.27
2	\checkmark	\checkmark	_	33.89	24.34
3	_	_	\checkmark	33.71	22.68
Ours	\checkmark	\checkmark	\checkmark	33.32	20.91

结果表明,通过时频域自适应滤波聚焦长期趋势 是提升模型预测效果的有效方法,多尺度判别器也能 通过对抗训练优化网络参数.并且,通过将两个模块结 合,兼顾上下文长期趋势和多尺度细节特性,可以取得 更好的预测效果.

4 结论与展望

本文提出了一种基于时频域信息融合和多尺度对 抗训练的目标轨迹预测方法.首先建立时域和时频域 两个通道.通过小波分解和自注意机制在时频域进行 自适应滤波,提取轨迹低频趋势特性;时域通过注意力 机制建模长期上下文依赖.然后将两个通道的信息融 合.最后通过一个全卷积判别器建模轨迹的多尺度短 期微运动表示,进一步拟合真实轨迹.在轨迹预测任务 上的实验结果表明,本文提出的方法在性能上优于相 对比的方法,证明了本文方法的有效性.

参考文献

- Zhao JX, Xu H, Wu JQ, *et al.* Trajectory tracking and prediction of pedestrian's crossing intention using roadside LiDAR. IET Intelligent Transport Systems, 2019, 13(5): 789–795. [doi: 10.1049/iet-its.2018.5258]
- 2 路宏广,赵树恩.基于鲁棒模型预测的智能汽车轨迹跟踪 控制研究.系统仿真学报,2022,34(1):153-162.
- 3 高秀龙, 葛动元. 基于自动驾驶系统的轻量型卷积神经网 络优化. 计算机系统应用, 2020, 29(3): 93-99. [doi: 10.15 888/j.cnki.csa.007320]
- 4 Li F, Xiong JJ, Lan XH, *et al.* Hypersonic vehicle trajectory prediction algorithm based on Hough transform. Chinese Journal of Electronics, 2021, 30(5): 918–930. [doi: 10.1049/ cje.2021.07.003]
- 5 Wang CJ, Ma L, Li RP, *et al.* Exploring trajectory prediction through machine learning methods. IEEE Access, 2019, 7: 101441–101452. [doi: 10.1109/ACCESS.2019.2929430]
- 6 Liu Y, Guan L, Hou C, *et al.* Wind power short-term prediction based on LSTM and discrete wavelet transform. Applied Sciences, 2019, 9(6): 1108. [doi: 10.3390/app

274 研究开发 Research and Development

9061108]

- 7 Liu CH, Hoi SCH, Zhao PL, et al. Online ARIMA algorithms for time series prediction. Proceedings of the 30th AAAI Conference on Artificial Intelligence. Phoenix: ACM, 2016. 1867–1873.
- 8 Abbas MT, Jibran MA, Afaq M, et al. An adaptive approach to vehicle trajectory prediction using multimodel Kalman filter. Transactions on Emerging Telecommunications Technologies, 2020, 31(5): e3734.
- 9 Zhang XY, Liu G, Hu C, *et al.* Wavelet analysis based hidden Markov model for large ship trajectory prediction. Proceedings of the 2019 Chinese Control Conference (CCC). Guangzhou: IEEE, 2019. 2913–2918. [doi: 10.23919/ChiCC. 2019.8866006]
- 10 Zhang XG, Mahadevan S. Bayesian neural networks for flight trajectory prediction and safety assessment. Decision Support Systems, 2020, 131: 113246. [doi: 10.1016/j.dss. 2020.113246]
- 11 Wu HX, Xu JH, Wang JM, et al. Autoformer: Decomposition transformers with auto-correlation for longterm series forecasting. Proceedings of the 34th Advances in Neural Information Processing Systems. NeurIPS, 2021. 22419–22430.
- 12 巩传江, 臧德厚, 郭金, 等. 基于小波卷积网络的高光谱图 像分类. 计算机系统应用, 2023, 32(7): 23-34. [doi: 10.15 888/j.cnki.csa.009186]
- 13 Hochreiter S, Schmidhuber J. Long short-term memory. Neural Computation, 1997, 9(8): 1735–1780. [doi: 10.1162/ neco.1997.9.8.1735]
- 14 Cho K, van Merriënboer B, Gulcehre C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Doha: ACL, 2014. 1724–1734.
- 15 Salinas D, Flunkert V, Gasthaus J, et al. DeepAR: Probabilistic forecasting with autoregressive recurrent networks. International Journal of Forecasting, 2020, 36(3): 1181–1191. [doi: 10.1016/j.ijforecast.2019.07.001]
- 16 Vaswani A, Shazeer N, Parmar N, *et al.* Attention is all you need. Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: ACM, 2017. 6000–6010.
- 17 Zhou HY, Zhang SH, Peng JQ, et al. Informer: Beyond efficient transformer for long sequence time-series forecasting. Proceedings of the 2021 AAAI Conference on Artificial Intelligence. AAAI, 2021. 11106–11115.

- 18 Koochali A, Schichtel P, Dengel A, et al. Probabilistic forecasting of sensory data with generative adversarial networks—ForGAN. IEEE Access, 2019, 7: 63868-63880. [doi: 10.1109/ACCESS.2019.2915544]
- 19 Mirza M, Osindero S. Conditional generative adversarial nets. arXiv:1411.1784, 2014.
- 20 Wu SF, Xiao X, Ding QG, et al. Adversarial sparse transformer for time series forecasting. Proceedings of the 34th International Conference on Neural Information Processing Systems. Vancouver: IEEE, 2020. 17105-17115.
- 21 Shafiee N, Padir T, Elhamifar E. Introvert: Human trajectory prediction via conditional 3D attention. Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021. 16810-16820.
- 22 申莎莎.基于小波变换与傅里叶变换对比分析及其在信号 去噪中的应用.山西师范大学学报(自然科学版),2018, 32(3): 27-32.
- 23 王雪阳, 刘茜. 融合变道意图识别的车辆轨迹预测 GAN 模 型. 计算机系统应用, 2023, 32(4): 354-360. [doi: 10.15 888/j.cnki.csa.009040]
- 24 Jin BB, Hu Y, Tang QK, et al. Exploring spatial-temporal multi-frequency analysis for high-fidelity and temporalconsistency video prediction. Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020. 4553-4562.
- 25 Zhou T, Ma ZQ, Wen QS, et al. FEDformer: Frequency enhanced decomposed transformer for long-term series forecasting. Proceedings of the 39th International Conference

on Machine Learning. Baltimore: PMLR, 2022. 27268-27286.

- 26 Andreux M, Angles T, Exarchakisgeo G, et al. Kymatio: Scattering transforms in python. The Journal of Machine Learning Research, 2020, 21(1): 60.
- 27 Zhou SB, Pan Y. Spectrum attention mechanism for time series classification. Proceedings of the 10th IEEE Data Driven Control and Learning Systems Conference (DDCLS). Suzhou: IEEE, 2021. 339-343.
- 28 章浙涛,朱建军,卢骏,等.小波变换在时间序列特征提取 中的应用. 测绘工程, 2014, 23(6): 21-26.
- 29 Xue Y, Xu T, Zhang H, et al. SegAN: Adversarial network with multi-scale L_1 loss for medical image segmentation. Neuroinformatics, 2018, 16(3): 383-392.
- 30 Li SY, Jin XY, Xuan Y, et al. Enhancing the locality and breaking the memory bottleneck of transformer on time series forecasting. Proceedings of the 33rd International Conference on Neural Information Processing Systems. Vancouver: NeurIPS, 2019. 5244-5254.
- 31 Choromanski KM, Likhosherstov V, Dohan D, et al. Rethinking attention with performers. Proceedings of the 9th International Conference on Learning Representations. ICLR, 2020.
- 32 Liang M, Yang B, Hu R, et al. Learning lane graph representations for motion forecasting. Proceedings of the