摘要:在联邦学习中, 不稳定客户端可能通过数据污染或恶意行为干扰全局模型的训练过程. 传统的防御方法通常侧重于排除这些客户端, 但忽视了不稳定客户端生成的数据也可以为模型提供有价值的训练信号. 为此, 本文提出了一种增强适应性的联邦对抗训练方法(Fed-ATEA), 利用不稳定客户端生成的对抗样本来增强全局模型的鲁棒性. 该框架允许在不排除不稳定客户端的情况下, 将其生成的对抗样本融入信任组客户端的训练过程, 进而增强模型的稳健性和鲁棒性. 通过动态调整训练策略, 最大化地利用不稳定客户端提供的有益信号, 并有效抑制其负面影响. 实验结果表明, 相对其他联邦学习方法, Fed-ATEA在应对攻击和噪声干扰时展现出更强的稳健性和鲁棒性.