改进ST-GCN的人体跌倒检测
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

广西自然科学基金联合专项 (2025GXNSFHA069207, 2025GXNSFHA069265)


Improved ST-GCN for Human Fall Detection
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对ST-GCN算法在动作识别中需要预先定义人体骨架拓扑图及准确率有待提高等问题, 提出了基于OpenPose与改进ST-GCN结合的跌倒检测算法. 利用OpenPose算法提取人体骨骼关键点数据, 将骨骼关键点数据输入改进的ST-GCN算法中进行动作识别. 对ST-GCN算法进行改进, 引入自适应图卷积模块, 通过动态调整图结构, 增强模型对不同动作类型特征提取的灵活性; 引入注意力机制模块, 进一步提升模型的识别性能. 在公开数据集上验证的结果显示, NTU-RGB+D 60数据集上, X-Sub和X-View的top-1准确率与改进前相比分别提高2.2%和2.5%; Kinetics-Skeleton数据集上, top-1和top-5准确率分别提高3.1%和4%. 自建数据集上的准确率与改进前相比提高4.7%. 实验结果表明, 所提出的算法满足实际应用需求.

    Abstract:

    A fall detection algorithm combining OpenPose with an improved ST-GCN is proposed to address the limitations of low accuracy and the need for pre-defining human skeleton topology graphs of the ST-GCN algorithm in action recognition. The OpenPose algorithm is used to extract the human skeletal keypoint data, which is then input into the improved ST-GCN algorithm for action recognition. The ST-GCN algorithm is improved by introducing an adaptive graph convolution module, which dynamically adjusts the graph structure to enhance the flexibility in feature extraction across different action types; an attention mechanism module is introduced to further improve the recognition performance of the model. Validation on publicly available datasets shows that on the NTU-RGB+D 60 dataset, the top-1 accuracy of X-Sub and X-View is improved by 2.2% and 2.5%, respectively, compared with the baseline; on the Kinetics-Skeleton dataset, the top-1 and top-5 accuracy are improved by 3.1% and 4%, respectively. In addition, the accuracy measured on the self-constructed dataset is improved by 4.7% compared with that before the improvement. The experimental results show that the proposed algorithm meets the requirements of practical applications.

    参考文献
    相似文献
    引证文献
引用本文

王世刚,邓珍妮,饶淼淼.改进ST-GCN的人体跌倒检测.计算机系统应用,,():1-9

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-22
  • 最后修改日期:2025-02-12
  • 录用日期:
  • 在线发布日期: 2025-06-24
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号