因果解耦表征学习综述
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

宁夏自然科学基金 (2023AAC03126)


Survey on Causally Disentangled Representation Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    人工智能若想从根本上理解我们周围的世界, 关键在于它能否学会从所观察到的低级感官数据中识别并解开隐藏的潜在可解释因素. 解耦表征学习正是为了从数据中提取出这些独立且可解释的潜在变量, 而因果解耦表征学习则更进一步强调了这些潜在变量之间的因果关系, 从而更真实地模拟现实世界的复杂性. 鉴于因果学习的重要性日益增长, 本文对结合因果学习的解耦表征学习的相关方法进行了详细、全面地介绍, 旨在为解耦表征学习的未来发展提供支持. 根据常用的因果学习的相关方法对因果解耦表征学习进行分类, 主要探讨了结合结构因果模型和基于流模型的解耦表征学习方法以及常用的数据集与评价指标. 此外, 还分析了因果解耦表征学习在图像生成、3D姿态估计和无监督领域适应等应用的实际案例, 并对未来的研究方向进行前瞻性展望, 为科研人员和实践者揭示未来可能的探索方向, 促进该领域的持续发展和创新.

    Abstract:

    The key for artificial intelligence to fundamentally comprehend the world around us is to identify and disentangle hidden, potentially interpretable factors from observed low-level sensory data. Disentangled representation learning aims to extract these independent and interpretable latent variables from data, while causally disentangled representation learning further emphasizes the causal relationships among these latent variables, thereby more truly simulating the complexity of the real world. In light of the increasing importance of causal learning, this study provides a detailed and comprehensive introduction to relevant methods combining causal learning with disentangled representation learning, intending to support future development in disentangled representation learning. The study classifies causally disentangled representation learning based on commonly used causal learning methods, mainly discussing methods that integrate structural causal models with flow-based disentangled representation learning, as well as commonly used datasets and evaluation metrics. Furthermore, it analyzes practical applications of causally disentangled representation learning in image generation, 3D pose estimation, and unsupervised domain adaptation, and provides a forward-looking perspective on future research directions. This study reveals potential exploration paths for researchers and practitioners, promoting continuous development and innovation in this field.

    参考文献
    相似文献
    引证文献
引用本文

黄贝贝,刘进锋.因果解耦表征学习综述.计算机系统应用,,():1-14

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-13
  • 最后修改日期:2025-01-07
  • 录用日期:
  • 在线发布日期: 2025-05-23
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号