基于EFRE-SAC的无人机自主避障策略
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Autonomous Obstacle Avoidance Strategy for UAV Based on EFRE-SAC
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在无人机自主避障任务中, 传统强化学习算法往往面临状态空间高维、信息稀疏以及探索效率低下等挑战. 现有的SAC算法虽然具备较强的稳定性和样本效率, 但在复杂环境下的表现仍显不足. 为此, 本文提出了一种基于注意力机制SE和随机网络蒸馏RND模块改进的SAC算法, 旨在提升无人机在三维地形环境中的自主避障能力. 注意力机制SE通过自适应调整特征图的通道权重, 增强了模型对重要信息的关注能力, 从而提升了特征表达的有效性; 而改进的RND网络则通过生成对抗目标, 鼓励探索新环境, 丰富了样本的多样性和改善了收集效率. 基于上述的SE和RND, 我们构建了一个增强特征表达和探索的SAC (EFRE-SAC) 框架, 使得无人机能够更有效地从深度图像中学习环境特征, 并在三维环境中快速适应. 在AirSim+UE4仿真平台的实验结果表明, 所提出的改进方法显著提高了无人机的避障成功率和训练效率, 验证了改进的SE和RND模块在强化学习任务中的有效性.

    Abstract:

    In the task of autonomous obstacle avoidance for UAVs, traditional reinforcement learning algorithms face challenges such as high-dimensional state spaces, sparse information, and low exploration efficiency. Although the existing soft Actor-Critic (SAC) algorithm demonstrates strong stability and sample efficiency, its performance in complex environments remains inadequate. To address these issues, this study proposes an improved SAC algorithm, incorporating a squeeze-and-excitation (SE) attention mechanism and random network distillation (RND) module, to enhance the obstacle avoidance capability of UAVs in three-dimensional terrain environments. The SE attention mechanism adaptively adjusts the channel weights of feature maps, enhancing the model’s focus on Critical information and improving feature representation. Meanwhile, the improved RND network promotes the exploration of new environments by generating adversarial targets, thus increasing sample diversity and collection efficiency. Based on the integration of SE and RND, an enhanced feature representation and exploration SAC (EFRE-SAC) framework is constructed, enabling more effective learning of environmental features from depth images and rapid adaptation in three-dimensional environments. Experimental results on the AirSim+UE4 simulation platform demonstrate that the proposed method significantly improves the obstacle avoidance success rate and training efficiency of UAVs, validating the effectiveness of the improved SE and RND modules in reinforcement learning tasks.

    参考文献
    相似文献
    引证文献
引用本文

刘萌月,时宏伟.基于EFRE-SAC的无人机自主避障策略.计算机系统应用,,():1-9

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-11-17
  • 最后修改日期:2025-02-12
  • 录用日期:
  • 在线发布日期: 2025-04-30
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号