基于汉明距离与邻域搜索的多目标流水车间调度优化
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

四川省科技计划(2023JDZH0034); 四川省科技成果转移转化示范项目(2024ZHCG0026)


Multi-objective Flow Shop Scheduling Optimization Based on Hamming Distance and Neighborhood Search
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对多目标流水车间调度问题, 提出了一种邻域搜索(NS)算法, 旨在以加工时间和总延迟时间为优化目标构建调度模型. 该方法通过交换调度序列中的工件顺序生成新的解, 从而在解空间中高效探索. 算法从种群中的初始解开始, 不断通过工作顺序的交换产生候选解, 并利用适应值对这些解的优劣进行评估. 随着迭代优化的进行, 算法逐渐逼近全局最优解. 此外, 基于占优关系函数的方法用于评估解的相对优势, 通过参考点计算解在不同目标维度上的距离, 并以此衡量解的质量. 为了实现解空间的系统性探索, 本文采用基于汉明距离的解生成策略. 该方法通过构建解之间的最短汉明路径, 在保留解的优良特征的同时, 有效地探索未知解空间, 提升算法寻找全局最优解的能力. 通过20个不同规模算例的实验, 将NS算法与传统遗传算法(GA)及非支配排序遗传算法(NSGA-II)进行比较, 结果显示该方法在多目标优化上表现出色, 验证了其有效性和优势.

    Abstract:

    A neighborhood search (NS) algorithm is proposed for the multi-objective flow shop scheduling problem, aiming to construct a scheduling model that optimizes processing time and total tardiness. This method efficiently explores the solution space by generating new solutions through the swapping of job sequences. Starting from an initial solution in the population, candidate solutions are iteratively generated by altering job sequences and are evaluated using fitness values. As the optimization proceeds, the algorithm gradually converges toward the global optimum. A dominance relationship function is employed to assess the relative superiority of solutions by calculating their distances to reference points across multiple objective dimensions, thus enabling effective quality evaluation. To ensure systematic exploration of the solution space, this study employs a solution generation strategy based on Hamming distance. By constructing the shortest Hamming paths between solutions, this approach preserves desirable characteristics. It also effectively probes unexplored regions of the solution space, thus enhancing the algorithm’s capability to locate the global optimum. Experimental results from 20 test cases of varying scales show that the proposed NS algorithm outperforms the traditional genetic algorithm (GA) and the non-dominated sorting genetic algorithm (NSGA-II) in multi-objective optimization, demonstrating its effectiveness and advantages.

    参考文献
    相似文献
    引证文献
引用本文

杨兴坤,杨昊,文武,徐虹.基于汉明距离与邻域搜索的多目标流水车间调度优化.计算机系统应用,,33():1-9

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-11-14
  • 最后修改日期:2025-02-12
  • 录用日期:
  • 在线发布日期: 2025-05-16
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号