改进GMM的高分辨率光学遥感影像土地覆盖分类
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:


Improved GMM for Land Cover Classification of High-resolution Optical Remote Sensing Image
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对高分辨率光学遥感影像地表覆盖复杂性增加、同质区域异质性增加、不同区域相似性增加导致分类难度增加等问题. 对高斯混合模型(Gaussian mixture model, GMM)进行改进, 提出一种基于双邻域关系的高斯回归混合模型(Gaussian regression mixture model, GRMM)监督学习方法. 首先, 对影像区域进行监督采样, 通过最小二乘法对直方图进行拟合, 对每个土地覆盖建立高斯混合模型表征复杂的土地覆盖灰度特征. 其次, 将相邻像素的局部空间信息引入到影像灰度空间中, 构建高斯回归模型. 最后, 在隶属度空间中, 对邻域关系进行再次处理, 实现分类决策. GRMM在合成影像及真实高分辨率遥感影像上的Kappa系数分别达到了97.2%、98.5%, 与现有主流模型相比具有较强的分类效率、去噪能力以及泛化能力, 分类结果边界清晰, 有效提高了高分辨率遥感影像分类能力.

    Abstract:

    Addressing issues such as increased surface cover complexity, heightened heterogeneity within homogeneous regions, and greater similarity between different regions in high-resolution optical remote sensing images, which increase classification difficulty, a supervised learning method based on a dual neighborhood relationships Gaussian regression mixture model (GRMM), an improved version of the Gaussian mixture model (GMM), is proposed. First, supervised sampling of image regions is conducted, with histograms fitted using the least squares method to establish Gaussian mixture models for each land cover, rep-resenting the complex gray-scale features of land cover. Second, local spatial information of adjacent pixels is in-corporated into the image gray-scale space to construct a Gaussian regression model. Finally, in the membership space, neighborhood relationships are processed again to make classification decisions. GRMM achieves kappa coefficients of 97.2% on synthetic images and 98.5% on real high-resolution remote sensing images. Compared to existing mainstream models, GRMM demonstrates strong classification efficiency, noise reduction capability, and generalization ability, with clear classification boundaries, effectively enhancing the classification performance of high-resolution remote sensing images.

    参考文献
    相似文献
    引证文献
引用本文

王春艳,付开欣,王祥.改进GMM的高分辨率光学遥感影像土地覆盖分类.计算机系统应用,,():1-9

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-22
  • 最后修改日期:2025-01-15
  • 录用日期:
  • 在线发布日期: 2025-06-27
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号