BDmin-VMD-CA结合MDFF的通信辐射源个体识别
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Identification of Communication Radiation Source Individuals by BDmin-VMD-CA Combined with MDFF
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对通信辐射源细微指纹特征难以提取及单一特征识别率不高的问题, 提出了一种联合最小巴氏距离和相关性分析的变分模态分解与多域特征参数融合的通信辐射源个体识别方法. 首先, 采用基于最小巴氏距离的变分模态分解方法对通信辐射源信号的每个符号波形进行分解, 得到若干个包含数据信息的低频本征模态函数和包含指纹信息的高频本征模态函数; 然后, 计算各本征模态函数与其符号波形信号的相关系数, 选取相关系数小的本征模态函数作为辐射源细微特征分量, 对细微特征分量提取时域、频域及熵多特征参数, 并拼接融合成多域特征向量实现对通信辐射源符号波形的特征提取; 最后, 通过长短期记忆网络对辐射源信号每个符号的多域特征向量依次进行学习分类, 实现通信辐射源个体识别. 选择公开的Oracle数据集进行了实验验证, 实验结果表明当信噪比为6 dB时, 本文提出的方法识别准确率可达96.7%, 比各单一域平均识别准确率提高了22.1%.

    Abstract:

    Addressing the challenges in extracting subtle fingerprint features of communication emitters and the low recognition rate of single-feature identification, a method for individual identification of communication emitters is proposed. This method combines variational mode decomposition (VMD) with multi-domain feature fusion (MDFF), based on the joint application of minimum Bhattacharyya distance (BDmin) and correlation analysis (CA). First, the VMD method based on BDmin is utilized to decompose each symbol waveform of the communication emitter signal into several intrinsic mode functions (IMFs), including low-frequency IMFs containing data information and high-frequency IMFs containing fingerprint information. Next, the correlation coefficients between each IMF and its symbol waveform signal are calculated, with IMFs exhibiting small correlation coefficients being selected as the subtle feature components of the emitter. Time-domain, frequency-domain, and entropy-based multi-feature parameters are then extracted from these subtle feature components and concatenated into a multi-domain feature vector for feature extraction of the communication emitter’s symbol waveform. Finally, a long short-term memory (LSTM) network is employed to sequentially learn and classify the multi-domain feature vectors of each symbol of the emitter signal, thus achieving individual identification and classification of communication emitters. Experimental validation is conducted using the publicly available Oracle dataset. The results show that, when the signal-to-noise ratio (SNR) is 6 dB, the proposed algorithm achieves a recognition accuracy of 96.7%, representing a 22.1% improvement compared to the average reco gnition accuracy of individual domains.

    参考文献
    相似文献
    引证文献
引用本文

刘高辉,闫迪. BDmin-VMD-CA结合MDFF的通信辐射源个体识别.计算机系统应用,,():1-12

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-31
  • 最后修改日期:2025-02-12
  • 录用日期:
  • 在线发布日期: 2025-06-13
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号