基于WOA-VMD和PSO-DSN的短期时空光伏功率预测
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金 (62372242); 国家电网公司科技项目 (5400-202117142A-0-0-00)


Short-term Spatio-temporal Photovoltaic Power Prediction Based on WOA-VMD and PSO-DSN
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    由于太阳能具有间歇性、不稳定性和随机性, 精确的短期光伏(photovoltaic, PV)功率预测具有较大的挑战, 阻碍了光伏与智能电网的有机整合. 为此, 本文提出了一种名为WVPD (WOA-VMD和PSO-DSN)的方法. 首先, 应用变分模态分解(variational mode decomposition, VMD)获得多个本征模态函数(intrinsic mode function, IMF)分量. 同时, 结合鲸鱼优化算法(whale optimization algorithm, WOA)算法进行模式分量和惩罚因子参数优化, 解决VMD分解不足和模式混合问题. 然后, 利用PV功率和数值天气预报(numerical weather prediction, NWP)数据的空间和时间相关性构建新型双流网络(dual-stream network, DSN), 即结合挤压和激励网络(squeeze-and-excitation networks, SENet)以及双向门控循环单元(bidirectional gated recurrent unit, BiGRU). 同时, 采用粒子群优化算法(particle swarm optimization, PSO)优化DSN中学习率和批量大小. 最后, 验证得出与深度学习混合模型相比, MSE平均提升78.6%, RMSE平均提升53.7%, MAE平均提升37.7%, 所提出的WVPD性能优越. 代码共享于https://github.com/ruanyuyuan/PV-power-forecast.

    Abstract:

    Due to the intermittency, instability, and randomness of solar energy, accurate short-term photovoltaic (PV) power forecasting presents significant challenges, hindering the integration of photovoltaic systems with smart grids. To address this, a method called WOA-VMD and PSO-DSN (WVPD) is proposed. First, variational mode decomposition (VMD) is applied to obtain multiple Intrinsic mode functions (IMFs) components. Meanwhile, the whale optimization algorithm (WOA) is used to optimize the mode components and penalty factor parameters to resolve issues of VMD decomposition and mode mixing. Then, the spatial and temporal correlations of PV power and numerical weather prediction (NWP) data are utilized to construct a novel dual-stream network (DSN), which combines squeeze-and-excitation networks (SENet) and bidirectional gated recurrent units (BiGRU). In addition, particle swarm optimization (PSO) is used to optimize the learning rate and batch size in the DSN. Finally, experiments demonstrate that compared to deep learning hybrid models, the proposed WVPD method improves MSE by 78.6%, RMSE by 53.7%, and MAE by 37.7%, showing superior performance over state-of-the-art models. The code can be found at https://github.com/ruanyuyuan/PV-power-forecast.

    参考文献
    相似文献
    引证文献
引用本文

赵英男,彭真,阮玉园.基于WOA-VMD和PSO-DSN的短期时空光伏功率预测.计算机系统应用,,():1-12

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-24
  • 最后修改日期:2025-01-21
  • 录用日期:
  • 在线发布日期: 2025-06-13
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号