基于边缘引导与交叉融合的红外小目标检测
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

山西省基础研究计划联合资助项目 (太重) (TZLH20230818007)


Infrared Small Target Detection Based on Edge Guidance and Cross Fusion
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    红外小目标检测旨在从红外图像中将小目标与背景进行像素级别的分离, 在军事、安防和航天等领域具有重要应用. 然而, 由于低对比度和低信噪比的影响, 现有方法容易丢失红外小目标的边缘信息, 也未能有效利用红外图像中低级和高级特征间的关系. 为此, 本文提出了一种边缘引导与交叉融合的红外小目标检测方法. 针对现有方法在提取边缘信息方面的不足, 本文构建了边缘引导的特征提取模块. 该模块通过注意力加权的方式将图像的边缘信息融入图像的全局-局部和细节特征中, 从而更有效地利用小目标的边缘信息. 此外, 为了更好地融合图像的高级和低级特征并提高目标与背景的分离能力, 本文设计了双分支交叉融合模块. 该模块通过空间注意力和通道注意力分别处理图像的低级和高级特征, 并通过交叉融合充分利用不同级别特征之间的互补性. 在两个基准数据集上的实验结果表明, 该方法相较于先进方法, IoU指标提升了1.89%, nIoU指标提升了2.28%.

    Abstract:

    Infrared small target detection aims to achieve pixel-level separation of small targets from the background in infrared images, with significant applications in military, security, and aerospace fields. However, due to low contrast and low signal-to-noise ratio, existing methods often lose edge information of infrared small targets and fail to effectively utilize the relationship between low-level and high-level features in infrared images. To address these limitations, this study proposes an edge-guided and cross-fusion method for infrared small target detection. Specifically, to overcome the shortcomings of existing methods in extracting edge information, this study constructs an edge-guided feature extraction module. This module integrates edge information into the global-local and detail features of the image through attention weighting, thereby utilizing edge information of small targets more effectively. Additionally, to better fuse high-level and low-level features of the image and enhance the target-background separation capability, this study designs a dual-branch cross-fusion module. This module processes low-level and high-level features of the image through spatial attention and channel attention, respectively, and fully utilizes the complementary relationships between different levels of features through cross-fusion. The experimental results on two benchmark datasets show that compared with state-of-the-art methods, this method improves the IoU metric by 1.89% and the nIoU metric by 2.28%.

    参考文献
    相似文献
    引证文献
引用本文

张楠,乔钢柱,朱磊.基于边缘引导与交叉融合的红外小目标检测.计算机系统应用,,():1-10

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-20
  • 最后修改日期:2025-01-10
  • 录用日期:
  • 在线发布日期: 2025-06-27
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号