ACLNet: 基于脑电信号的自闭症检测模型
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金面上项目(62076103); 广东省普通高校特色创新项目(2022KTSCX035)


ACLNet: EEG Signal-based Autism Spectrum Disorder Detection Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    近年来, 随着自闭症谱系障碍(ASD)诊断需求的增加, 基于脑电信号的自动化检测方法受到广泛关注. 然而, 现有方法在准确性、泛化能力、鲁棒性和可解释性方面仍面临诸多挑战. 本研究提出了一种改进的自闭症检测模型ACLNet (attention-CosCNN-LSTM-net), 通过多维注意力机制提升模型对关键信号的关注度, 结合余弦卷积神经网络捕捉脑电信号的频率特征, 以及树状LSTM模块建模信号中的层次化结构与长期依赖, 全面提取脑电信号的时空与频域特征. 基于ASD脑电信号数据集的5折交叉验证实验表明, ACLNet实现了94.11%的分类准确率、93.29%的召回率和93.78%的精确率, 显著优于现有检测方法. 此外, 模型在不同数据划分及未见数据上表现稳定, 泛化能力和鲁棒性得到充分验证. 本研究还设计了消融实验分析关键模块对性能的贡献, 验证其对特征提取的重要贡献. 本研究为ASD自动化检测提供了一种高效、稳定且具可解释性的解决方案, 进一步推动了脑电信号在ASD检测中的应用, 为相关研究和临床诊断提供支持.

    Abstract:

    In recent years, with the increasing demand for diagnosing autism spectrum disorder (ASD), automated detection methods based on electroencephalogram (EEG) signals have gained significant attention. However, existing approaches still face challenges in terms of accuracy, generalization ability, robustness, and interpretability. An improved ASD detection model, attention-CosCNN-LSTM-net (ACLNet), is proposed. A multi-dimensional attention mechanism is leveraged to enhance the focus on critical signals. A cosine convolutional neural network is combined to capture frequency features of EEG signals, and a tree-structured LSTM module is integrated to model the hierarchical structure and long-term dependencies within signals. These components enable comprehensive extraction of spatiotemporal and frequency domain features of EEG signals. Experiments conducted on an ASD EEG dataset with five-fold cross-validation demonstrate that ACLNet achieves a classification accuracy of 94.11%, a recall rate of 93.29%, and a precision rate of 93.78%, significantly outperforming existing detection methods. Moreover, the model exhibits stable performance across different data splits and unseen data, validating strong generalization ability and robustness. Ablation studies further confirm the critical contributions of each module to feature extraction and overall performance. This study provides an efficient, stable, and interpretable solution for automated ASD detection, advancing the application of EEG signals in ASD diagnosis and offering valuable support for related research and clinical practice.

    参考文献
    相似文献
    引证文献
引用本文

黄宇恒,蒋春鸿,黄炜壕,潘家辉. ACLNet: 基于脑电信号的自闭症检测模型.计算机系统应用,,():1-10

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-18
  • 最后修改日期:2025-01-10
  • 录用日期:
  • 在线发布日期: 2025-06-24
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号