基于时谱域融合与时序自注意力增强的无监督遥感云层遮挡图像修复
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金面上项目(62272234); 国家重点研发计划(2022YFB4401301)


Unsupervised Remote Sensing Cloud Occlusion Image Restoration Based on Temporal-spectral Domain Fusion and Temporal Self-attention Enhancement
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    光学遥感图像中的云遮挡问题是遥感数据处理中的核心挑战之一, 针对目前云层去除技术在处理云层边缘信息及保留图像细节方面的缺陷, 本文提出基于时谱域融合与时序自注意力增强的生成对抗网络(TGAN). TGAN通过其两阶段模块化设计, 实现了遥感图像修复质量与处理效率的双重提升. 第1阶段, 基于时序自注意力机制的特征提取模块, 用线性升维层捕获时域、谱域特征, 以一维线性降维层弥补传统最大池化不足, 增强时间序列位置特征建模能力, 还设计含权重分配策略的多头自注意力机制精准捕捉边缘信息; 第2阶段为自适应图像修复模块, 由随机噪声消除与局部对比增强子模块协同改善图像细节、抑制噪声. 此外, TGAN 的鉴别器采用多尺度模块, 这一策略实现了全局一致性与局部细节之间的平衡. 通过生成器与鉴别器之间的交互博弈, 生成器持续优化修复图像, 以提高修复效果. 这种动态的博弈过程推动了生成器在图像修复任务中的迭代优化. 为了验证TGAN的有效性, 我们在Sen2_MTC数据集上进行了实验. 实验结果表明, TGAN在峰值信噪比(PSNR)和主观视觉评估方面均显著优于现有方法, 在训练集和测试集的PSNR分别达到了21.547 dB和20.206 dB, 表明该方法在遥感云层图像修复任务中具有较好的性能与应用潜力.

    Abstract:

    Cloud occlusion in optical remote sensing images is one of the core challenges in remote sensing data processing. To address the limitations of current cloud removal technologies in handling cloud edge information and preserving image details, a generative adversarial network (TGAN) based on temporal-spectral domain fusion and temporal self-attention enhancement is proposed. Through its two-stage modular design, TGAN simultaneously improves the quality of remote sensing image restoration and processing efficiency. In the first stage, the feature extraction module, based on a temporal self-attention mechanism, uses a linear expansion layer to capture temporal and spectral domain features, compensating for the limitations of traditional maximum pooling with a one-dimensional linear dimensionality reduction layer, thus enhancing the modeling capability of time-series positional features. A multi-head self-attention mechanism with a weight allocation strategy is designed to accurately capture edge information. The second stage is an adaptive image restoration module, composed of a random noise cancellation submodule and a local contrast enhancement submodule, which collaboratively enhances image details and suppresses noise. In addition, TGAN’s discriminator incorporates multi-scale modules, a strategy that balances global consistency and local detail. Through the interactive game between the generator and discriminator, the generator continuously optimizes the restored image, improving restoration performance. This dynamic adversarial process drives iterative optimization of the generator in the image restoration task. To verify the effectiveness of TGAN, experiments are conducted on the Sen2_MTC dataset. The results show that TGAN significantly outperforms existing methods in terms of peak signal-to-noise ratio (PSNR) and subjective visual evaluation, with PSNR values of 21.547 dB and 20.206 dB for the training and test sets, respectively, indicating that TGAN demonstrates strong performance and application potential in remote sensing cloud image restoration.

    参考文献
    相似文献
    引证文献
引用本文

邱涛,吴倩,张艳艳.基于时谱域融合与时序自注意力增强的无监督遥感云层遮挡图像修复.计算机系统应用,,33():1-13

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-16
  • 最后修改日期:2025-01-07
  • 录用日期:
  • 在线发布日期: 2025-05-16
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号