单目度量深度估计综述
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Survey on Monocular Metric Depth Estimation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    单目深度估计(monocular depth estimation, MDE)是计算机视觉中的核心任务之一, 在空间理解、三维重建、自动驾驶等领域扮演着重要角色. 基于深度学习的单目深度估计方法能够从单张图像中预测物体的相对深度, 但由于缺乏度量尺度信息, 常面临尺度不一致的问题, 限制了其在视觉SLAM、三维重建和新视角合成等下游任务中的应用效果. 为此, 单目度量深度估计(monocular metric depth estimation, MMDE)应运而生, 通过对场景尺度的精确推断, 解决了深度预测中的一致性难题, 不仅显著提升了在时序任务中的深度估计稳定性, 还简化了下游任务的适配, 进一步拓展了实际应用场景. 本文系统回顾了深度估计技术的发展历程, 从传统几何方法到深度学习方法的转向, 全面梳理了该领域的技术演进及其关键突破. 在此基础上, 重点讨论了尺度不可知(scale-agnostic)方法在零样本(zero-shot)泛化中的贡献, 分析其如何为MMDE的进一步发展奠定基础. 文章还深入探讨了零样本MMDE的最新研究进展, 聚焦当前的核心挑战, 包括模型的泛化能力、边缘细节丢失等问题. 针对这些问题, 研究社区通过无标数据扩充、图像分块、模型结构优化和生成式方法等创新途径, 取得了一定进展. 本文详细剖析了这些方向的最新成果及其解决思路, 揭示了当前研究的前沿路线与技术局限. 最后, 总结了零样本MMDE领域内最新研究成果之间的内在联系, 梳理了尚待解决的关键问题, 并展望了未来研究方向. 通过对领域现状与发展趋势的全面分析, 旨在为研究者提供清晰的技术脉络和前沿洞察, 助力研究者更快掌握MMDE的研究现状, 为推动更广泛的应用和技术创新提供启示.

    Abstract:

    Monocular depth estimation (MDE) is a core task in computer vision, essential for spatial understanding, 3D reconstruction, autonomous driving, and other applications. Deep learning-based MDE methods can predict relative depth from a single image, but they often lack metric information, leading to scale inconsistency and limiting their utility in downstream tasks such as visual SLAM, 3D reconstruction, and novel view synthesis. To address these limitations, monocular metric depth estimation (MMDE) has been introduced. By enabling scene-scale inference, MMDE addresses depth consistency issues, enhances temporal stability in sequential tasks, and simplifies the integration of downstream applications, significantly expanding its practical use cases. This study offers a comprehensive review of the development of depth estimation technologies, from traditional geometric approaches to modern deep learning methods, highlighting key milestones and breakthroughs in the field. Special emphasis is placed on scale-agnostic methods and their role in enabling zero-shot generalization, which has been foundational for the progress of MMDE. The study also examines the latest advancements in zero-shot MMDE, focusing on critical challenges such as improving model generalization and preserving fine edge details. To address these issues, innovative solutions have been explored, including advanced data augmentation techniques, refined model architectures, and the integration of generative approaches, leading to significant advancements. This review analyzes these solutions and their contributions in depth. The study concludes by synthesizing the connections between recent achievements in zero-shot MMDE, identifying unresolved challenges, and exploring potential future directions for research. By providing an in-depth analysis of the current state of the field and emerging trends, this study aims to serve as a valuable resource for researchers, offering a clear roadmap for understanding and advancing MMDE technology across a wide range of applications.

    参考文献
    相似文献
    引证文献
引用本文

张久伶,朱美玲,徐馨润,吴玉荣,杨建文,张秋鸿,王伟,王佳,姜慧龙.单目度量深度估计综述.计算机系统应用,,():1-13

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-12
  • 最后修改日期:2025-01-02
  • 录用日期:
  • 在线发布日期: 2025-06-20
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号