基于哈希学习的图像篡改检测算法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

浙江省自然科学基金 (LQ19F020004)


Hash-learning-based Image Tampering Detection Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    现有的基于哈希的图像篡改检测算法主要依赖于传统手工设计的特征, 导致生成的取证哈希缺乏细节信息, 难以达到基于对象的篡改定位效果以及应对各种复杂的篡改类型. 针对这一问题, 本文提出了一种基于哈希学习的图像篡改检测模型. 该模型主要由两个模块组成: 哈希构建模块和篡改定位模块. 在哈希构建模块, 提出一种基于深度学习的多尺度特征提取与融合模块. 该模块不仅可以融合不同尺度的图像特征, 而且可以构造出紧凑又信息密集的图像哈希; 在篡改定位模块, 通过比较原始图像与篡改图像哈希值的差异, 可以得到粗糙的篡改区域定位效果. 为进一步提升定位精度, 模块采用了逐层融合哈希差异与多尺度特征的解码策略. 该策略将全局信息与局部细节进行有效结合, 从而提升了模型的鲁棒性及各种复杂篡改的适应性. 实验在3个数据集上与9种最新方法进行了对比. 在CASIAv1数据集中, 本文方案相比于性能第2的模型, F1值提高了10.7%; 在Columbia数据集中, F1值提高了1%; 在COVERAGE数据集中, F1值提高了17%. 为了进一步验证所提系统中各模块的有效性及其对篡改检测性能的贡献, 本文方案在CASIAv1数据集上进行了多项消融实验. 结果表明, 所提出的各个模块均显著提升了整体的篡改检测效果. 为了验证模型的鲁棒性, 本文方案在CASIAv1数据集中对图像进行了JPEG压缩、高斯模糊和高斯噪声的鲁棒性测试, 实验结果表明, 该方法在各种干扰下仍然保持了优异的鲁棒性. 实验结果表明, 所提出的基于深度学习与哈希的图像篡改定位模型在性能上明显优于已有的篡改检测方法, 并且在3个公开数据集上表现出较强的泛化能力.

    Abstract:

    Existing hash-based image tampering detection algorithms primarily rely on traditionally hand-designed features, which results in forensic hashes lacking detailed information. This leads to difficulties in achieving object-level tampering localization and handling various complex tampering types. To address this issue, a hash learning-based image tampering detection model is proposed. The model consists of two main modules: the hash construction module and the tampering localization module. In the hash construction module, a deep learning-based multi-scale feature extraction and fusion module is proposed. This module not only integrates image features from different scales but also constructs compact, information-dense image hashes. In the tampering localization module, differences in hash values between the original and tampered images are compared, resulting in a rough localization of tampering regions. To further improve localization accuracy, a layer-by-layer fusion strategy is employed to decode hash differences and multi-scale features. This strategy effectively combines global information with local details, enhancing the model’s robustness and adaptability to various complex tampering scenarios. Experiments conducted on three datasets and compared with nine state-of-the-art methods show that, on the CASIAv1 dataset, the proposed method achieves a 10.7% improvement in F1 score compared to the second-best model; on the Columbia dataset, the F1 score increases by 1%; and on the COVERAGE dataset, the F1 score increases by 17%. Ablation experiments on the CASIAv1 dataset validate the effectiveness of the proposed modules and their contributions to tampering detection performance, showing that each module significantly enhances overall detection accuracy. To verify the model’s robustness, the proposed method is evaluated under JPEG compression, Gaussian blur, and Gaussian noise on the CASIAv1 dataset. The experimental results demonstrate that the method maintains excellent robustness under various disturbances. The results indicate that the proposed deep learning and hash-based image tampering localization model outperforms existing tampering detection methods and shows strong generalization capability across three public datasets.

    参考文献
    相似文献
    引证文献
引用本文

潘豪杰,严彩萍,刘仁海.基于哈希学习的图像篡改检测算法.计算机系统应用,,():1-11

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-07
  • 最后修改日期:2025-01-15
  • 录用日期:
  • 在线发布日期: 2025-05-29
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号