基于改进YOLOv9的黄瓜病害识别
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金重点项目 (32130085)


Cucumber Disease Recognition Based on Improved YOLOv9
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决黄瓜病害种类繁多且症状相似导致的识别困难问题, 本文提出一种改进的YOLOv9黄瓜病害识别模型BiFEL-YOLOv9, 以提高自然背景下黄瓜病害的检测精度. 首先在关键网络层引入加权双向特征金字塔网络模块(bidirectional feature pyramid network, BiFPN), 增强了模型对多尺度特征的融合能力; 其次结合特征增强模块(feature enhancement)和大核选择性注意力机制(large selective kernel block, LSKBlock)对原始的RepNCSPELAN4模块进行改进得到RNFEL模块, 增强了模型的特征表示能力及对复杂背景的鲁棒性. 实验结果表明, BiFEL-YOLOv9模型准确率达到97.96%、召回率达到95.51%、平均精度均值mAP_0.5和mAP_0.5:0.95分别达到98.21%和95.12%, 均优于原YOLOv9模型, 有效实现了黄瓜病害的检测与识别.

    Abstract:

    To address the difficulty in identifying cucumber diseases caused by numerous varieties and similar symptoms, this study proposes an improved YOLOv9 model for cucumber disease recognition, named BiFEL-YOLOv9, to enhance detection accuracy in natural backgrounds. Initially, a weighted bidirectional feature pyramid network module is incorporated into critical network layers to enhance the model’s multi-scale feature fusion capability. Following that, the original RepNCSPELAN4 module is enhanced by integrating a feature enhancement module and a large selective kernel block (LSKBlock) to obtain the RNFEL module, which improves the model’s feature representation capability and robustness to complex backgrounds. Experimental results indicate that the BiFEL-YOLOv9 model achieves an accuracy of 97.96%, a recall rate of 95.51%, and mean average precision scores of 98.21% for mAP_0.5 and 95.12% for mAP_0.5:0.95, all of which surpass the performance of the original YOLOv9 model. The proposed model effectively accomplishes the detection and recognition of cucumber diseases.

    参考文献
    相似文献
    引证文献
引用本文

邵佳慧,姚百蔚,田宏.基于改进YOLOv9的黄瓜病害识别.计算机系统应用,,():1-7

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-11-08
  • 最后修改日期:2025-01-15
  • 录用日期:
  • 在线发布日期: 2025-05-29
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号