知识图谱增强的广告推荐算法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

福建省自然科学基金 (2021J01619)


Knowledge Graph-enhanced Advertisement Recommendation Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着互联网广告市场的快速增长, 精准的广告推荐变得至关重要. 如何有效学习用户特征和广告特征之间交互是点击率(CTR)与转化率(CVR)预测任务的关键. 然而, 现有的点击率与转化率预测模型存在特征依赖性偏差和广告语义信息挖掘不足的问题. 为此, 本文提出了一种知识图谱增强的广告推荐算法(knowledge graph-enhanced advertisement recommendation algorithm, KGEARA). 该算法通过构建知识图谱将结构化数据转化为三元组的形式, 有效地整合广告特征信息并捕捉广告间的关联性. 通过知识图谱表示学习将这些特征转化为嵌入表示, 以融合广告的语义特征并捕捉交互细节. 进一步利用广告特征嵌入与其他特征嵌入结合, 通过专家网络、门控网络和任务塔预测点击率和转化率, 并引入逆向倾向评分(IPS)处理点击倾向不均的问题, 以纠正预测偏差. 在广告真实数据集上进行了广泛实验, 实验结果验证了模型在提升CTR和CVR预测准确性方面的有效性.

    Abstract:

    With the rapid growth of the Internet advertising market, accurate advertisement recommendations have become crucial. Effectively capturing the interaction between user and advertisement features is key to improving the prediction of click-through rate (CTR) and conversion rate (CVR). However, existing CTR and CVR prediction models suffer from feature dependency bias and insufficient semantic information extraction from ads. To address these issues, this study proposes a knowledge graph-enhanced advertisement recommendation algorithm (KGEARA). The algorithm constructs a knowledge graph by converting structured data into triplets, effectively integrating advertisement feature information and capturing relationships between ads. Through knowledge graph representation learning, these features are transformed into embeddings that merge the semantic characteristics of ads and capture interaction details. Further, by combining advertisement feature embeddings with other feature embeddings, CTR and CVR are predicted through expert networks, gated networks, and task-specific towers. In addition, inverse propensity scoring (IPS) is introduced to address click-bias issues and correct prediction biases. Extensive experiments on real-world advertisement datasets demonstrate the effectiveness of the proposed model in improving CTR and CVR prediction accuracy.

    参考文献
    相似文献
    引证文献
引用本文

郑翠春,林欣扬,骆龙泉,汪璟玢.知识图谱增强的广告推荐算法.计算机系统应用,,():1-10

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-08
  • 最后修改日期:2025-01-15
  • 录用日期:
  • 在线发布日期: 2025-04-30
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号