改进YOLOv5s和DeepSORT的行人跟踪算法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

广西自然科学基金联合专项 (2025GXNSFHA069207, 2025GXNSFHA069265)


Improved Pedestrian Tracking Algorithm for YOLOv5s and DeepSORT
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对YOLOv5s算法作为DeepSORT的目标检测器具有计算量大、模型复杂以及检测精度有待提高等问题. 首先, 引入GhostNet轻量化模块对YOLOv5s模型进行轻量化, 减少模型的参数量与计算量, 以满足移动端的部署要求; 其次, 引入ECA注意力机制, 增强模型的感知能力, 提升检测性能; 最后, 对YOLOv5s模型进行知识蒸馏, 进一步提升模型的检测精度. 改进后的YOLOv5s在精确度、召回率和mAP@0.5上与未改进的YOLOv5s相比分别提高2%、1%和0.8%, 模型参数量降低47%, 模型复杂度降低48%. 将改进后的YOLOv5s与DeepSORT算法相结合, 与未改进的YOLOv5s相比在MOTA、MOTP和IDF1上分别提升1.2%、3.1%和2.7%, IDS下降35. 通过实验验证, 改进后的YOLOv5s作为检测器能够提升检测速度, 减少行人ID的切换, 能有效应用于行人跟踪.

    Abstract:

    Using YOLOv5s as the object detector in DeepSORT presents challenges, including high computational costs, complex in structure, and exhibits limitations in detection accuracy. Firstly, the GhostNet lightweight module is introduced to lightweight the YOLOv5s model, reducing both the number of parameters and computational load of the model to meet the deployment requirements for mobile devices. Secondly, the ECA attention mechanism is incorporated to enhance the model’s perceptual capability, improving detection performance. Lastly, knowledge distillation is applied to the YOLOv5s model to further enhance detection accuracy. The improved YOLOv5s algorithm shows a 2% increase in precision, 1% increase in recall, and 0.8% increase in mAP@0.5, compared to the original algorithm. The model’s parameter count is reduced by 47%, and its complexity by 48%. When the enhanced YOLOv5s is combined with the DeepSORT algorithm, MOTA, MOTP, and IDF1 are improved by 1.2%, 3.1%, and 2.7%, respectively, while IDS is reduced by 35%, compared to the original version. Experimental results verify that the improved YOLOv5s, as a detector, enhances detection speed, reduces pedestrian ID switching, and can be effectively applied to pedestrian tracking.

    参考文献
    相似文献
    引证文献
引用本文

王世刚,邓珍妮,饶淼淼.改进YOLOv5s和DeepSORT的行人跟踪算法.计算机系统应用,,():1-9

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-26
  • 最后修改日期:2025-01-15
  • 录用日期:
  • 在线发布日期: 2025-06-27
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号