基于改进YOLOv8的水稻病害检测
作者:
基金项目:

国家自然科学基金面上项目(42275200)


Rice Disease Detection Based on Improved YOLOv8
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    本研究提出了一种改进的YOLOv8模型(FCU-YOLOv8), 用于提升水稻病害检测的精度和效率, 以应对水稻病害种类繁多、背景复杂及病害间特征差异小等问题. 在YOLOv8主干网络的C2f模块基础上, 采用了FasterNeXt模块替换. FasterNeXt模块通过优化网络结构减少了计算量和内存访问量, 同时提高了特征提取的效率, 从而降低模型的推理成本. 设计了C3K模块(多尺度卷积模块)和CPSA模块(卷积注意力机制), 以进一步提升模型对病害区域的特征感知能力. C3K模块允许模型通过灵活的卷积核选择适应不同尺度的病害特征, 而CPSA模块利用注意力机制增强模型对关键信息的捕捉. 为了提升检测框的质量和对密集病害目标的检测效果, 模型采用了优化的UIoU (unified intersection over union)损失函数, 该函数在回归阶段通过平衡边界框的精确性与一致性来提升检测性能. 在自制的8种常见水稻病害图像数据集上, FCU-YOLOv8在多个性能指标上相较于原始YOLOv8有显著提升, 其中mAP@0.5指标达到94.7%, 相较于基线模型提升了2.4%, mAP@0.5:0.95指标达到了67.2%, 相较于基线模型提高3.3%, 在轻量化方面, 模型参数相较于基线模型降低了24.2%, 计算浮点数下降28.7%.与主流算法进行对比实验, 所提算法表现优于目前主流算法, 说明了该网络的有效性.

    Abstract:

    An improved YOLOv8 model (FCU-YOLOv8) is proposed to enhance the accuracy and efficiency of rice disease detection, addressing the challenges of diverse rice diseases, complex backgrounds, and subtle differences in characteristics between diseases. The FasterNeXt module is used to replace the C2f module in the YOLOv8 backbone network. By optimizing the network structure, the FasterNeXt module reduces computation and memory access while improving feature extraction efficiency, thus lowering the inference cost of the model. The C3K module (multi-scale convolution module) and CPSA module (convolutional attention mechanism) are designed to further enhance the model’s ability to perceive disease region features. The C3K module allows the model to adapt to disease characteristics at various scales through flexible convolutional kernel selection, while the CPSA module employs an attention mechanism to enhance the model’s ability to capture key information. To improve the quality of detection boxes and the detection performance of dense disease targets, the optimized unified intersection over union (UIoU) loss function is adopted. This function improves detection performance by balancing the accuracy and consistency of bounding boxes during the regression phase. On a custom-made image dataset of eight common rice diseases, FCU-YOLOv8 demonstrates significant improvements over the original YOLOv8 in several performance metrics. The mAP@0.5 index reaches 94.7%, a 2.4% improvement over the baseline model, and the mAP@0.5:0.95 index reaches 67.2%, a 3.3% improvement. The model’s parameters are reduced by 24.2%, and the calculated floating-point operations decrease by 28.7%, compared to the baseline model in terms of model lightweighting. Compared with mainstream algorithms, the proposed algorithm outperforms current leading algorithms, demonstrating the effectiveness of the network.

    参考文献
    相似文献
    引证文献
引用本文

聂俊,朱节中.基于改进YOLOv8的水稻病害检测.计算机系统应用,,():1-14

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-24
  • 最后修改日期:2025-01-15
  • 在线发布日期: 2025-04-01
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号