摘要:高通量X射线衍射(X-ray diffraction, XRD)分析在加速材料发现方面至关重要, 但传统方法通常依赖大量人工解释, 且在处理复杂的XRD数据时容易忽视低强度峰值信息, 从而限制准确性的提升. 为解决这一问题, 本文提出了一个面向多模态晶体结构预测的大语言模型(large language model, LLM)代理框架, 该框架集成了GPT-4驱动的智能代理以及基于XRD和对分布函数的多模态投票模型, 能够自主执行晶体结构和空间群预测任务. 此外, 本文通过引入知识图谱来增强LLM的推理能力, 帮助其理解晶体特征之间的关系, 进一步提升预测的准确性. 实验结果表明, 该框架在晶体结构预测和空间群预测任务上的准确率分别达到97.5%和98.7%. 这一设计显著提升了高通量分析的准确性和效率, 有望推动材料科学研究的进展, 为解决其他具有高度关联性的多任务问题提供宝贵的启示.