基于双层多智能体大模型的点击诱饵检测
作者:
基金项目:

国家自然科学基金 (62076217); 国家语言委员会 (ZDI145-71); 江苏省研究生科研与实践创新计划 (SJCX23_1896)


Clickbait Detection Via Dual-layer Multi-agent Large Language Model
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    点击诱饵是指用夸张或惊奇的标题吸引用户点击, 近年来已在新闻门户和社交媒体等在线应用中呈现泛滥趋势, 导致用户的不良体验甚至引起网络欺诈. 大模型由于强大的语义理解和文本生成能力, 已在一系列自然语言处理任务中取得优异的效果. 但是, 大模型在面对如点击诱饵检测这类决策边界不清晰的特定领域问题时很容易产生幻觉, 为此, 我们提出基于双层多智能体大模型的方法, 在不需要微调整个大模型的情况下, 有效提升了点击诱饵检测的准确率. 具体来说, 通过第1层中智能体的内部投票, 和第2层中不同智能体的交叉投票, 最终取得了良好的检测效果. 通过对3个基准数据集进行验证, 本文提出的方法比最先进的大模型和提示学习方法的准确率分别高出近13%和10%.

    Abstract:

    Clickbait refers to the use of sensational or exaggerated headlines to attract users into clicking, a practice that has proliferated in recent years across online platforms such as news portals and social media. This trend has led to user dissatisfaction and, in some cases, facilitated online fraud. Large language models (LLM), known for their robust natural language understanding and text generation capabilities, have demonstrated outstanding performance across various natural language processing tasks. However, when faced with specific challenges like clickbait detection, where decision boundaries are often unclear, LLM are prone to hallucination. To address the issue, a method based on a dual-layer multi-agent large language model is proposed, which significantly enhances clickbait detection accuracy without the need to fine-tune the entire model. Specifically, internal voting within agents in the first layer and cross-voting among different agents in the second layer results in enhanced detection performance. Validation against three benchmark datasets shows that the proposed method outperforms state-of-the-art large-scale models and prompt learning techniques by nearly 13% and 10% in terms of accuracy, respectively.

    参考文献
    相似文献
    引证文献
引用本文

袁旭,朱毅,强继朋,袁运浩,李云.基于双层多智能体大模型的点击诱饵检测.计算机系统应用,,():1-8

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-31
  • 最后修改日期:2025-01-15
  • 在线发布日期: 2025-03-31
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号