基于空间和通道特征重构的肾脏病理组织分割网络
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划(2023YFC3402800); 国家自然科学基金(82441029, 62171230, 62101365, 92159301, 62301263, 62301265, 62302228, 82302291, 82302352, 62401272); 江苏省科技厅前沿引领技术基础研究重大项目(BK2023200)


Kidney Pathological Tissue Segmentation Network Based on Spatial and Channel Feature Reconstruction
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    全景切片图像中, 肾脏组织在形态上形状不规则, 大小差异显著, 在类别上不同的肾脏组织会有相似的纹理和结构, 并且还会存在类别不平衡的问题. 针对上述问题, 提出轻量级肾脏病理组织分割网络ASRMU-Net. 首先在网络浅层引入空间重构单元(SSRU), 利用平均值和最大值捕捉肾脏组织不同的空间信息, 通过门控机制和卷积操作自适应地重建空间特征, 通过交叉重组增强有用特征; 其次在网络中间层构建ASRM模块, 利用空间和通道的特征重建与融合, 增强特征表达能力; 接着在网络深层引入通道重构单元(CSRU), 采用自适应通道拆分、压缩与深度可分离卷积相结合的策略, 通过融合高维和低维特征, 并通过自适应加权重建, 从而有效区分有相似纹理和结构的不同组织; 最后通过改进损失函数来优化模型, 减轻类别不平衡的影响. 改进网络在间质纤维化数据集的MDiceMIoU为85.4%和74.8%, 在AIDPATH数据集上的MDiceMIoU为96.1%和92.4%. 结果表明, 改进网络以较少的参数量实现了比其他医学分割模型更高的分割精度.

    Abstract:

    In whole slice images, renal tissues exhibit irregular shapes, significant size variations, and similar textures and structures across different tissue types, accompanied by the challenge of class imbalance. To address these issues, a lightweight kidney pathological tissue segmentation network, ASRMU-Net, is proposed. First, a spatial reconstruction unit (SSRU) is introduced in the shallow layers of the network to capture spatial information from different renal tissues using average and maximum values. Through gated mechanisms and convolutional operations, spatial features are adaptively reconstructed, and useful features are enhanced via cross-recombination. In the middle layers, an ASRM module is designed to enhance feature representation by reconstructing and fusing spatial and channel features. In the deep layers, a channel reconstruction unit (CSRU) is integrated. This unit combines adaptive channel splitting, compression, and depthwise separable convolution to effectively fuse high-dimensional and low-dimensional features, adaptively reconstruct them, and distinguish tissues with similar textures and structures. Finally, an improved loss function is applied to optimize the model and reduce the impact of class imbalance. The enhanced network achieves MDice and MIoU scores of 85.4% and 74.8% on the interstitial fibrosis dataset, and 96.1% and 92.4% on the AIDPATH dataset. The results demonstrate that the improved network achieves higher segmentation accuracy with fewer parameters compared to other medical segmentation models.

    参考文献
    相似文献
    引证文献
引用本文

张昊旻,蔡程飞,徐军,贾周.基于空间和通道特征重构的肾脏病理组织分割网络.计算机系统应用,,():1-10

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-10
  • 最后修改日期:2025-01-02
  • 录用日期:
  • 在线发布日期: 2025-04-25
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号