融合剪枝和知识蒸馏的水下生物检测
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金 (61671010)


Underwater Biological Detection Integrating Pruning and Knowledge Distillation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对捕鱼打捞、海底勘探等行业存在的现有水下设备存储和计算资源有限, 检测模型体积庞大, 难以在终端设备高效运行的问题, 提出一种融合剪枝和知识蒸馏的轻量级水下生物检测算法, 首先设计C2f_GSConv结构来替换原有YOLOv8n颈部网络中的C2f模块, 减少模型整体的计算复杂度, 优化模型结构; 其次引用MPDIoU来替换CIoU作为新的损失函数, 加快回归边界框收敛速度, 提升检测性能; 然后利用LAMP剪枝算法对模型进行裁剪, 去除冗余的通道信息和卷积核, 进一步地减少参数量和计算量, 压缩模型体积; 最后通过知识蒸馏来恢复模型的检测精度, 减少剪枝带来的不必要的精度损失. 实验结果表明, 在URPC数据集上, 改进后的模型相较于基准模型YOLOv8n, mAP50提升了1.8%, 参数量减少了62%, 计算量减少了56%, FPS提高了186 f/s. 通过在嵌入式开发板上进行部署验证, 结果同样具备良好的性能, 因此能够满足水下低配置设备的应用部署.

    Abstract:

    To address the issues of limited storage and computing resources in existing underwater equipment used in industries such as fishing and seabed exploration, as well as the large size of detection models, which are challenging to operate efficiently on terminal devices, a lightweight underwater biological detection algorithm combining pruning and knowledge distillation is proposed. First, the C2f_GSConv structure is designed to replace the C2f module in the neck of the YOLOv8n network, reducing the overall computational complexity and optimizing the model structure. Second, MPDIoU is introduced to replace CIoU as a new loss function, accelerating the convergence of the regression bounding box and improving detection performance. The LAMP pruning algorithm is then applied to trim the model by removing redundant channel information and convolutional kernels, further reducing the number of parameters and computational complexity, thus compressing the model size. Finally, knowledge distillation is employed to restore the model’s detection accuracy and reduce the precision loss caused by pruning. Experimental results show that, on the URPC dataset, the improved model outperforms the benchmark YOLOv8n model with a 1.8% increase in mAP50, a 62% reduction in parameters, a 56% reduction in computational cost, and a 186 f/s increase. The results also demonstrate excellent performance upon deployment and verification on an embedded development board, confirming its suitability for application in low-configuration underwater equipment.

    参考文献
    相似文献
    引证文献
引用本文

吴明轩,李远禄,王键翔.融合剪枝和知识蒸馏的水下生物检测.计算机系统应用,,():1-12

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-09
  • 最后修改日期:2025-01-02
  • 录用日期:
  • 在线发布日期: 2025-05-27
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号